Answer:
1.008moles of iodine
Explanation:
Hello,
This question requires us to calculate the theoretical yield of I₂ or number of moles that reacted.
Percent yield = (actual yield / estimated yield) × 100
Actual yield = 1.2moles
Estimated yield = ?
Percentage yield = 84%
84 / 100 = 1.2 / x
Cross multiply and solve for x
100x = 84 × 1.2
100x = 100.8
x = 100.8/100
x = 1.008moles
1.008 moles of I₂ reacted in excess of H₂ to give 1.2 moles of HI
This uses the concept of freezing point depression. When faced with this issue, we use the following equation:
ΔT = i·Kf·m
which translates in english to:
Change in freezing point = vant hoff factor * molal freezing point depression constant * molality of solution
Because the freezing point depression is a colligative property, it does not depend on the identity of the molecules, just the number of them.
Now, we know that molality will be constant, and Kf will be constant, so our only unknown is "i", or the van't hoff factor.
The van't hoff factor is the number of atoms that dissociate from each individual molecule. The higher the van't hoff factor, the more depressed the freezing point will be.
NaCl will dissociate into Na+ and Cl-, so it has i = 2
CaCl2 will dissociate into Ca2+ and 2 Cl-, so it has i = 3
AlBr3 will dissociate into Al3+ and 3 Br-, so it has i = 4
Therefore, AlBr3 will lower the freezing point of water the most.
The gas flows from higher concentration/pressure to lower concentration/pressure, which is outside the ball.
Answer:
D) Lead (II) hydroxide is least soluble because the hydroxide ions in water decrease the dissociation of the ions due to the common ion effect.
Explanation: