Substances have different tendencies to donate or accept electrons. When a really good donor meets a great acceptor, the chemical reaction releases a lot of energy. Oxygen (O2) is the best electron acceptor and is used in many aerobic reactions (reactions with oxygen). Hydrogen gas (H2) is a good electron donor.
When O2 and H2 are combined, along with a catalyst, water (H2O) is formed. This example of a redox reaction can be written like this:

Answer:
At the start of the process, the volume not occupied by the water is 2 m3
Explanation:
At the start of the process you have a half full tank. It means that also a half is empty (not occupied by water).
Since the volume is 4 m3, 2 m3 are full (occupied by water) and 2 m3 (not occupied by water).
The volume in time will be
![V(t)=V_0+(f_i-f_o)*t\\\\V(t) = 2 +(6.33/1000-3.25/1000)*t=2+0.00308*t \, \, [m3]](https://tex.z-dn.net/?f=V%28t%29%3DV_0%2B%28f_i-f_o%29%2At%5C%5C%5C%5CV%28t%29%20%3D%202%20%2B%286.33%2F1000-3.25%2F1000%29%2At%3D2%2B0.00308%2At%20%5C%2C%20%5C%2C%20%5Bm3%5D)
The answer is C :
It controls the entry and exit of substances.
Than you for posting your question here. I hope the answer helps.
The answer as to be grams (g) since you it is aske for mass. What you have for units is 1/g.
<span>Very close. The factor is 5. </span>
<span>answer is 5 * 65 g of water.</span>
Answer:
5.8 g
Explanation:
Molecular weight in Daltons is equivalent to the molecular weight in grams per mole.
The amount of NaCl required is calculated as follows:
(2 mol/L)(50 mL)(1 L/1000 mL) = 0.1 mol
This amount is converted to grams using the molar mass (58 g/mol).
(0.1 mol)(58 g/mol) = 5.8 g