The ATP and NADPH is used by the calvin cycle as a power source for converting carbon dioxide from the atmosphere into simple sugar glucose. The second of two major stages in photosynthesis<span> (following the light reactions), involving atmospheric CO2 fixation and reduction of the fixed carbon into carbohydrate.</span>
Answer:
1. The cells in our bodies are surrounded by these types of solutions. → Isotonic solution.
3. When an animal cell is places in this solution, it will burst (get layer) → Hypotonic solution.
4. When an animal cell is placed in this solution, it will shrivel or shrink (get smaller) → Hypertonic solution.
Explanation:
The cells in the body are in a balance of substances —concentration of solutes— between their cytoplasm and the extracellular space. This balance is dynamic in living beings, due to the constant exchange of ions and substances between the intracellular and extracellular space. For this reason, the extracellular medium is isotonic with the cytoplasm.
<u>A cell can lose or gain water depending on the amount of solutes that a medium has in which it is found</u>, with respect to the cytoplasm. This difference in solutes concentrations produces an osmotic gradient that drags water from the least concentrated solution to the most concentrated, through the process of osmosis, which seeks to achieve an equilibrium of concentrations.
- <em>When a animal cell is exposed to a </em><em>hypertonic solution</em><em> </em>—<em>with a higher concentration of solutes</em>— <em>it loses water and tends to </em><em>dehydrate and become smaller</em><em>.</em>
- <em>An animal cell in a </em><em>hypotonic solution</em><em> receives water, so it can </em><em>expand and even burst</em><em>.</em>
In practice, the concentrations of intracellular and extracellular solutes depend not only on the osmotic gradient, but also on the concentration gradient of substances.
Answer:
Understanding the structure and function of DNA has helped revolutionise the investigation of disease pathways, assess an individual's genetic susceptibility to specific diseases, diagnose genetic disorders, and formulate new drugs. It is also critical to the identification of pathogens.
Starting from the triggering action potential, the membrane potential in the neuron will propagate from the dendrites to the cell body then to the axons where synaptic vesicles are located. The action potential will trigger an influx of calcium into the axon then calcium will bind to proteins that will move the synaptic vesicles to the synaptic cleft. The membrane of the synaptic vesicles will eventually join the membrane of the synapse and then the neurotransmitters inside the vesicles will be "spilled" into the synaptic cleft.