Answer:
C) cation, loses, anion, gains
Explanation:
Lithium is a metal from Group 1, so it has 1 valence electron. Thus, it loses 1 electron to complete its octet and form the cation Li⁺.
Oxygen is a nonmetal from Group 16, so it has 6 valence electrons. Thus, it gains 2 electrons to complete its octet and form the anion O²⁻.
In the reaction between Li and O, there is a transfer of electrons making an ionic bond. In the bond, lithium would be a cation because it loses an electron, and oxygen would be an anion because it gains 2 electrons.
Answer:
A. 8600 J
General Formulas and Concepts:
<u>Thermochemistry</u>
Specific Heat Formula: q = mcΔT
- q is heat (in J)
- m is mass (in g)
- c is specific heat (in J/g °C)
- ΔT is change in temperature (in °C)
Explanation:
<u>Step 1: Define</u>
[Given] <em>m</em> = 1600 g
[Given] ΔT = 214 °C - 202 °C = 12 °C
[Given] <em>c</em> = 0.450 J/g °C
[Solve] <em>q</em>
<u>Step 2: Find Heat</u>
- Substitute in variables [Specific Heat Formula]: q = (1600 g)(0.450 J/g °C)(12 °C)
- Multiply [Cancel out units]: q = (720 J/°C)(12 °C)
- Multiply [Cancel out units]: q = 8640 J
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs as our lowest.</em>
8640 J ≈ 8600 J
Topic: AP Chemistry
Unit: Thermodynamics
Nonrenewable we only use them and renewable we can use them over and over.
The thing that governs whether a reaction is exothermic is the energy given out / used up to break / form the bonds in the reaction.
<span>When two substances react, the bonds in those substances first break up, releasing energy, before re-forming in a different way, taking in energy. The nature of the bonds that are broken up and reformed determines whether more energy is given out (exothermic) or taken in (endothermic)</span>