Answer:
Following are the solution to the given question:
Explanation:
The material is necessary to cook since frying is a speedy process for evaporation.
Drug A is now in the compressed fluid area, and the material would not boil if the pressure is chilled. Because the ship is solid, its substance A claim is false.
Unless the volume comprises of a drop in the heat, the B substance reaches a vapor pressure area and a wet region. That's the area that melting may occur. His claim for material B could therefore be true.
150
A
Explanation:
V
s
V
p
=
N
s
N
p
(
1
)
N
refers to the number of turns
V
is voltage
s
and
p
refer to the secondary and primary coil.
From the conservation of energy we get:
V
p
I
p
=
V
s
I
s
(
2
)
From
(
1
)
:
V
s
V
p
=
900
00
3
00
=
300
∴
V
s
=
300
V
p
Substituting for
V
s
into
(
2
)
⇒
V
p
I
p
=
300
V
p
×
0.5
∴
I
p
=
150
A
Seems a big current.
Answer:
Code is given below:
Explanation:
.data
str1: .space 20
str2: .space 20
msg1:.asciiz "Please enter string (max 20 characters): "
msg2: .asciiz "\n Please enter string (max 20 chars): "
msg3:.asciiz "\nSAME"
msg4:.asciiz "\nNOT SAME"
.text
.globl main
main:
li $v0,4 #loads msg1
la $a0,msg1
syscall
li $v0,8
la $a0,str1
addi $a1,$zero,20
syscall #got string to manipulate
li $v0,4 #loads msg2
la $a0,msg2
syscall
li $v0,8
la $a0,str2
addi $a1,$zero,20
syscall #got string
la $a0,str1 #pass address of str1
la $a1,str2 #pass address of str2
jal methodComp #call methodComp
beq $v0,$zero,ok #check result
li $v0,4
la $a0,msg4
syscall
j exit
ok:
li $v0,4
la $a0,msg3
syscall
exit:
li $v0,10
syscall
methodComp:
add $t0,$zero,$zero
add $t1,$zero,$a0
add $t2,$zero,$a1
loop:
lb $t3($t1) #load a byte from each string
lb $t4($t2)
beqz $t3,checkt2 #str1 end
beqz $t4,missmatch
slt $t5,$t3,$t4 #compare two bytes
bnez $t5,missmatch
addi $t1,$t1,1 #t1 points to the next byte of str1
addi $t2,$t2,1
j loop
missmatch:
addi $v0,$zero,1
j endfunction
checkt2:
bnez $t4,missmatch
add $v0,$zero,$zero
endfunction:
jr $ra
Answer:
Time taken by the
diameter droplet is 60 ns
Solution:
As per the question:
Diameter of the droplet, d = 1 mm = 0.001 m
Radius of the droplet, R = 0.0005 m
Time taken for complete evaporation, t = 1 min = 60 s
Diameter of the smaller droplet, d' = 
Diameter of the smaller droplet, R' = 
Now,
Volume of the droplet, V = 
Volume of the smaller droplet, V' = 
Volume of the droplet ∝ Time taken for complete evaporation
Thus

where
t' = taken taken by smaller droplet


t' = 