Answer:
a) dB / dA = 2
,
b) Network B Network A
2 1
4 2
6 3
Explanation:
a) The expression for grating diffraction is
d sin θ = m λ
where d the distance between two slits, λ the wavelength and m an integer that represents the diffraction range
In this exercise we are told that the two spectra are in the same position, let's write the expression for each network
Network A
m = 1
sin θ = 1 λ / dA
Network B
m = 2
sin θ = 2 λ / dB
they ask us for the relationship between the distances, we match the equations
λ / dA) = 2 λ / dB
dB / dA = 2
b) let's write the equation of the networks
sin θ = m_A λ / dA
sin θ = m_B λ / dB
we equalize
m_A λ/ dA = m_B λ / dB
we use that
dB / dA = 2
m_A 2 = m_B
therefore the overlapping orders are
Network B Network A
2 1
4 2
6 3
Answer:
When a motorcycle takes a turn, centrifugal force—in this case, friction between the tires and the road—pushes it towards the center. This basic physics explains why riders can lean into turns without falling. However, when an outside force disrupts or unbalances these forces, the vehicle crashes. that is the only one that I can answer for you. :)
Microwaves are one of the lowest energies on the electromagnetic spectrum. While X-Rays are one of the highest energies on the electromagnetic spectrum. One similarity is that they are both on the electromagnetic spectrum. Also they both travel at the spped of light in a vacuum. One way they are different is They have different frequencies and wavelengths. Also they are used for different studies.
Answer:
For any collision occurring in an isolated system, momentum is conserved. The total amount of momentum of the collection of objects in the system is the same before the collision as after the collision.
Explanation:
Hope this helps
Answer:
A. The electron will begin to move along the axis, towards the centre and the instantaneous velocity because the force acting on it depends largely on acceleration and x until it reaches maximum velocity at centre.
B. Veloctiy (Vb) = 1.66m/s
Explanation:
Given the following data
x(a) = 0.3m
x(b) = 0
q = 1.6×10^-19
Q = 24nc
r = 0.15m
Required: the motion of the electron and the velocity (Vb)
1. At point A the electron will begin to move along the axis from point A to point B, the magnitude of the electric field will change while moving which depends on that and this will produce instantaneous force which will later change and the acceleration will change too while moving, the velocity would reach maximum value at point B
2. Potential energy and kinetic energy are given by
U(a) + K(a) = U(b) + K(b). . .1
Initial P.E and K.E are given as
U(a) = kQ/√x²(a) + a2
By substitution, we have
U(a) = 9×10^9 × (-1.9×10^-19)×24×10^-9/√(0.15)²+(0.3²)
U(a) = -1.03×10^-16
Final P.E and K.E are given as
U(b) = KQ/√x²(b) + a2
By substitution, we have
U(b) = 9×10^9×(-1.9×10^-19)×24×10^-9/√(0.15)²+(0)²
U(b) = -2.3×10^16
3. By substitution into equation 1 becomes
-1.03×10^-6 - 2.3×10^-16 + MV²(b)/2
V(b) = √2×1.27×10^-16/9.1×10^31
V(b) = 1.66×10^7m/s