Density = 7.36 grams ÷ (2 cm × 2 cm × 2cm) = 0.92 g/cm^3
Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:
KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J
Part B:
Now you can use Hooke’s law to find the force:
F = kx
F = (5000)(0.2)
F = 1000 N
Explanation: Velocity is the displacement of an object during a specific unit of time. Two measurements are needed to determine velocity. Displacement and time. Displacement includes a direction, so velocity also includes a direction. Speed with direction. Velocity can be an average velocity or an instantaneous velocity. Units for velocity are the same as for speed: m/s, km/h, and mph. Delta x(Δx) is the symbol used for displacement. Delta (Δ) means to "change in." Δx means to "change in position." Δx is calculated by final position minus initial position. Velocity formula: → v=Δx/t as a fraction.
v=Δx/t

<em><u>Final answer is 30.</u></em>
Hope this helps!
Thanks!
Have a great day!
-Charlie
Answer:
Letter b is wavelength. Letter a is amplitude.
Explanation:
Let's imagine a simple experiment. Imagine you have a long thick rope which one end is at your hands, and you start an oscillatory motion in it, moving your hand up and down. Then a friend of you take a picture of the rope in motion, looking at the rope laterally. Now let's find the wavelength and amplitude. Amplitude is "The distance from the center of the oscillation of the rope (when the rope was not in motion) to its high or low point", or the vertical displacement, in our experiment. On the other hand, wavelength is "The distance between one high point /low point and the next high point /low point". Take a look at a photo of a wave in your textbook and you will find the answer as well. ; )