The answer would be letter choice B
Answer:
t = 3.414 s
s = 23.3 m
Explanation:
Let t be the total time of motion
Let s be the total distance of motion
s - s/2 = ½at² - ½a(t - 1²) = ½a(t² - (t - 1)²)
s/2 = ½a(t² - (t² - 2t + 1)) = ½a(t² - t² + 2t - 1)
s = a(2t - 1)
s = 4(2t - 1)
s = 8t - 4
8t - 4 = ½4t²
8t - 4 = 2t²
0 = 2t² - 8t + 4
0 = t² - 4t + 2
t = (4 ±√(4² - 4(1)(2))) / 2 = (4 ± √8)/2 = 2 ± √2
t = 3.414 s
or
t = 0.5857... s which we ignore because it does not have a full last second.
s = ½(4)3.414² = 23.3137... 23.3 m
Answer - corona, chromosphere, photosphere
Answer:
272.89g
Explanation:
Find the diagram to the question in the attachment below;.
Using the principle of moment to solve the question which states that the sum of clockwise moment is equal to the sum of anticlockwise moment.
Moment = Force * Perpendicular distance
Taking the moment of force about the pivot.
Anticlockwise moment:
The 85g mass will move in the anticlockwise
Moment of 85g mass = 85×36.6
= 3111gcm
Clockwise moment.
The mass of the metre stick M situated at the centre (50cm from each end) will move in the clockwise direction towards the pivot.
CW moment = 11.4×M = 11.4M
Equating CW moment to the ACW moment we will have;
11.4M = 3111
M = 3111/11.4
M = 272.89g
The mass of the metre stick is 272.89g
The answer should be the letter C...