Answer:
1/8
Step-by-step explanation:
1/2 of 1/4 is 1/8
Answer:
P(A∪B) = 1/3
Step-by-step explanation:
Red Garments = 1 red shirt + 1 red hat + 1 red pairs of pants
Total Red Garments = 3
Green Garments = 1 green shirt + 1 green scarf + 1 green pairs of pants
Total Green Garments = 3
The total number of garments = Total Red Garments + Total Green Garments:
3 + 3 = 6
Let A be the event that he selects a green garment
P(A) = Number of required outcomes/Total number of possible outcomes
P(A) = 3/6
Let B be the event that he chooses a scarf
P(B) = 1/6
The objective here is to determine P(A or B) = P(A∪B)
Using the probability set notation theory:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∩B) = Probability that a green pair of pant is chosen = P(A) - P(B)
= 3/6-1/6
= 2/6
P(A∪B) = 1/2 + 1/6 - 2/6
P(A∪B) = 2/6
P(A∪B) = 1/3
Answer:
y= 48 + 0.1x
x= miles driven
Step-by-step explanation:
<u>We need to calculate the fixed and variable cost (per mile) of renting a car. To do that, we will use the high-low method:</u>
Variable cost per unit= (Highest activity cost - Lowest activity cost)/ (Highest activity units - Lowest activity units)
Variable cost per unit= (65 - 58) / (170 - 100)
Variable cost per unit= $0.1 per mile
Fixed costs= Highest activity cost - (Variable cost per unit * HAU)
Fixed costs= 65 - (0.1*170)
Fixed costs= $48
Fixed costs= LAC - (Variable cost per unit* LAU)
Fixed costs= 58 - (0.1*100)
Fixed costs= $48
y= 48 + 0.1x
x= miles driven
The answer is 6.1 = 6 1/10