0.019 is the correct answer. I hope this is the answer you are looking for! :)
Let T be the taco, B the burrito, MP the mexican pizza, R the rice, and N the beans.
For the main course we can have the first three.
----- T
------ B
-------MP
Each main course comes with the two sides. So an R branch and a B branch go to each of the taco, burrito, or pizza.
-----T---------R or N.
We expand it to
--------T-----------R
---------------------N
And we repeat it for the rest.
Thus, the tree diagram is
----- T --------R
-----------------N
-----B---------R
-----------------N
----MP--------R
----------------N
Let s represent the number of sales, and t the total pay
the equation to represent this situation is t = 2s + 50
so set t to 100, and solve for s
100 = 2s + 50
50 = 2s
25 = s
you need to make at least 25 sales
Answer:
5 classes - 2 bass classes and 3 viola classes.
Step-by-step explanation:
Find the greatest common factor (GCF)
List the factors of 20 and 30:
20: 1, 2, 4, 5, 10, 20
30: 1, 2, 3, 5, 6, 10, 15, 30
The greatest factor that both numbers share is 10.
Therefore, there are 10 students in each class. So, she teaches 2 bass classes and 3 violas classes.
hope this helps! <3
The equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
<h3>How to determine the functions?</h3>
A quadratic function is represented as:
y = a(x - h)^2 + k
<u>Question #6</u>
The vertex of the graph is
(h, k) = (-1, 2)
So, we have:
y = a(x + 1)^2 + 2
The graph pass through the f(0) = -2
So, we have:
-2 = a(0 + 1)^2 + 2
Evaluate the like terms
a = -4
Substitute a = -4 in y = a(x + 1)^2 + 2
y = -4(x + 1)^2 + 2
<u>Question #7</u>
The vertex of the graph is
(h, k) = (2, 1)
So, we have:
y = a(x - 2)^2 + 1
The graph pass through (1, 3)
So, we have:
3 = a(1 - 2)^2 + 1
Evaluate the like terms
a = 2
Substitute a = 2 in y = a(x - 2)^2 + 1
y = 2(x - 2)^2 + 1
<u>Question #8</u>
The vertex of the graph is
(h, k) = (1, -2)
So, we have:
y = a(x - 1)^2 - 2
The graph pass through (0, -3)
So, we have:
-3 = a(0 - 1)^2 - 2
Evaluate the like terms
a = -1
Substitute a = -1 in y = a(x - 1)^2 - 2
y = -(x - 1)^2 - 2
Hence, the equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
Read more about parabola at:
brainly.com/question/1480401
#SPJ1