Answer:
Step-by-step explanation:
Confidence interval for the difference in the two proportions is written as
Difference in sample proportions ± margin of error
Sample proportion, p= x/n
Where x = number of success
n = number of samples
For the men,
x = 318
n1 = 520
p1 = 318/520 = 0.61
For the women
x = 379
n2 = 460
p2 = 379/460 = 0.82
Margin of error = z√[p1(1 - p1)/n1 + p2(1 - p2)/n2]
To determine the z score, we subtract the confidence level from 100% to get α
α = 1 - 0.95 = 0.05
α/2 = 0.05/2 = 0.025
This is the area in each tail. Since we want the area in the middle, it becomes
1 - 0.025 = 0.975
The z score corresponding to the area on the z table is 1.96. Thus, confidence level of 95% is 1.96
Margin of error = 1.96 × √[0.61(1 - 0.61)/520 + 0.82(1 - 0.82)/460]
= 1.96 × √0.0004575 + 0.00032086957)
= 0.055
Confidence interval = 0.61 - 0.82 ± 0.055
= - 0.21 ± 0.055
Answer:
-5
Step-by-step explanation:
Let n be the unknown number
difference is subtraction
3n -4 = -19
Add 4 to each side
3n-4+4 = -19+4
3n = -15
Divide by 3
3n/3 = -15/3
n = -5
<u>Answer:
</u>
Expression x + 2my + z represents cost of order where x, y, z are cost of small , medium and large drinks (in dollars) respectively.
<u>Solution:
</u>
Given that
Juan’s family ordered a small drink and m medium drinks.
Alex family ordered m medium drinks and a large drink.
Need to write an algebraic expression which shows total cost of both order in dollars.
Let’s assume cost of one small drink = x
And assume cost of one medium drink = y
And assume cost of one large drink = z
So now cost of order of Juan’s family is equal to cost of 1 small drink + cost of m medium drinks = 1
x + m
y
= x + my
And cost of order of Alex family is equal to cost of m medium drinks + cost of one large drink
= m x y + 1 x z
=my + z
So total cost of both order in dollars = x + my + my + z = x + 2my + z
Hence expression x + 2my + z represents cost of order where x , y , z are cost of small , medium and large drinks (in dollars) respectively.
Answer:
10
Step-by-step explanation:
give me brainly
am i correct? let me know