Answer:
B
Step-by-step explanation:
It's a right triangle, so the pythagorean theorem will be used a lot.
First, find the side length on the left.
25^2 = 7^2 + y
y = 24
Now, knowing that 7 - 3 = 4 (the smaller side length), I can use this theorem again to find x.
4^2 + 24^2 = x^2
x = 
Just need to simplify it a little farther...
592 / 16 = 37, so B must be the answer.
Answer:
Step-by-step explanation:
Given a curve defined by the function 2x²+3y²−4xy=36
The total differential of this function with respect to a variable x makes the function an implicit function because it contains two variables.
Differentiating both sides of the equation with respect to x we have:
4x+6ydy/dx-(4xd(y)/dx+{d(4x)/dx(y))} = 0
4x + 6ydy/dx -(4xdy/dx +4y) = 0
4x + 6ydy/dx - 4xdy/dx -4y = 0
Collecting like terms
4x-4y+6ydy/dx - 4xdy/dx = 0
4x-4y+(6y-4x)dy/dx = 0
4x-4y = -(6y-4x)dy/dx
4y-4x = (6y-4x)dy/dx
dy/dx = (4y-4x)/6y-4x
dy/dx = 2(2y-2x)/2(3y-2x)
dy/dx = 2y-2x/3y-2x proved!
Answer:
87 packages
Step-by-step explanation:
First we need to find the volume of the cone-shaped vase.
The volume of a cone is given by:
V_cone = (1/3) * pi * radius^2 * height
With a radius of 9 cm and a height of 28 cm, we have:
V_cone = (1/3) * pi * 9^2 * 28 = 2375.044 cm3
Each package of sand is a cube with side length of 3 cm, so its volume is:
V_cube = 3^3 = 27 cm3
Now, to know how many packages the artist can use without making the vase overflow, we just need to divide the volume of the cone by the volume of the cube:
V_cone / V_cube = 2375.044 / 27 = 87.9646 packages
So we can use 87 packages (if we use 88 cubes, the vase would overflow)
Answer:
x=8 an they are at the exact opposite side
Step-by-step explanation: