The equation for which square method is possible is x²-8=1
Step-by-step explanation:
For checking which of the equation satisfies the complete square condition, we proceed by checking each of the available options
1). x²+20x=52
Rewriting it as x²+20x-52
This binomial expression is not a perfect square since the product of the coefficient of x²(i.e. 1) and independent constant (i.e. 52) is not a perfect square.
2). 5x² + 3x = 9
This equation can be rearranged as 5x²+3x-9=0
This binomial expression is not a perfect square since the product of the coefficient of x²(i.e. 5) and independent constant(i.e. 9) is not a perfect square.
3.) x² −8=1
This equation can be rearranged as x²=9
Hence x= ±3
This binomial expression is a perfect square and can be done by the square method.
4). 3x² −x+17=0
This binomial expression is not a perfect square since the product of the coefficient of x²(i.e. 3) and independent constant(i.e. 17) is not a perfect square.
Answer:
0.0433
Step-by-step explanation:
Since we have a fixed number of trials (N = 25) and the probability of getting heads is always p = 0.05, we are going to treat this as a binomial distribution.
Using a binomial probability calculator, we find that the probability of obtaining heads from 8 to 17 times is 0.9567 given that the con is fair. The probability of obtaining any other value given that the coin is fair is going to be:
1 - 0.9567 = 0.0433
Since we are going to conclude that the coin is baised if either x<8 or x>17, the probability of judging the coin to be baised when it is actually fair is 4.33%
The answer is c because it makes the most sense
The result is the perpendicular bisector of AB, perpendicular to the segment AB, and through its midpoint.