Answer:k=4.5
Step-by-step explanation:4.5/1.5=3
Answer: The probability that the avg. salary of the 100 players exceeded $1 million is approximately 1.
Explanation:
Step 1: Estimate the standard error. Standard error can be calcualted by dividing the standard deviation by the square root of the sample size:

So, Standard Error is 0.08 million or $80,000.
Step 2: Next, estimate the mean is how many standard errors below the population mean $1 million.


-6.250 means that $1 million is siz standard errors away from the mean. Since, the value is too far from the bell-shaped normal distribution curve that nearly 100% of the values are greater than it.
Therefore, we can say that because 100% values are greater than it, probability that the avg. salary of the 100 players exceeded $1 million is approximately 1.
Answer:The value of the bulldozer after 3 years is $121950
Step-by-step explanation:
We would apply the straight line depreciation method. In this method, the value of the asset(bulldozer) is reduced linearly over its useful life until it reaches its salvage value. The formula is expressed as
Annual depreciation expense =
(Cost of the asset - salvage value)/useful life of the asset.
From the given information,
Useful life = 23 years
Salvage value of the bulldozer = $14950
Cost of the new bulldozer is $138000
Therefore
Annual depreciation = (138000 - 14950)/ 23 = $5350
The value of the bulldozer at any point would be V. Therefore
5350 = (138000 - V)/ t
5350t = 138000 - V
V = 138000 - 5350t
The value of the bulldozer after 3 years would be
V = 138000 - 5350×3 = $121950