Answer:
3.84 Ω
Explanation:
From the question given above, the following data were obtained:
Electrical power (P) = 150 W
Voltage (V) = 24 V
Resistance (R) =?
P = IV
Recall:
V = IR
Divide both side by R
I = V/R
P = V/R × V
P = V² / R
Where:
P => Electrical power
V => Voltage
I => Current
R => Resistance
With the above formula (i.e P = V²/R), we can calculate resistance as illustrated below:
Electrical power (P) = 150 W
Voltage (V) = 24 V
Resistance (R) =?
P = V²/R
150 = 24² / R
150 = 576 / R
Cross multiply
150 × R = 576
Divide both side by 150
R = 576 / 150
R = 3.84 Ω
Thus, the resistance is 3.84 Ω
Answer:
Explanation:
we know that specific heat is the amount of heat required to raise the temperature of substance by one degree mathmeticaly
Q=mcΔT
ΔT=T2-T1
ΔT=26.8-10.2=16.6
C for water is 4.184
therefore
Q=1.00*4.184*16.6
Q=69.4 j
now we have to covert joule into calorie
1 calorie =4.2 j
x calorie=69.4 j/2
so 69.4 j =34.7 calorie thats why 34.7 calorie heat is required to raise the temperature of water from 10.2 to 26.8 degree celsius
I will take a stab at it, but there are not equations, did you forget them?
Ans: Calcium sulfate.
K2SO4 (aq) + Ca(NO3)2 (aq) ⇒ 2KNO3 (aq) + CaSO4 (s)