The atoms of different chemical elements can be differentiated based on the number of protons.
Each chemical element is differentiated by his number of protons. This number of protons is also knowing as atomic number and it is represented by the letter (Z).
The atomic number represented the number of protons in the nucleus of an element. For example:
- The element that has only 1 proton in his nucleus is Hydrogen atom.
- The element that has 2 protons in his nucleus is Helium atom.
<h3>What is an atom?</h3>
The atom is the smallest part of the composition of matter, it is indivisible and is composed of a nucleus that has protons and neutrons, and around the nucleus there are the electrons.
Learn more about the atom at: brainly.com/question/17545314
#SPJ4
Answer: a. 0.75m (NH4)3PO4 will have the lowest freezing point .
Explanation: Freezing point decreases as the concentration of the solute substance increases. Assuming the same solvent for all of them, for instance water.
∆T= i.Kf.b
∆T= freezing point depression
i= vant Hoff factor
Kf= molality
Assuming water to be the solvent for all Kf=1.86°C/M
VANT HOFF FACTORS :
For (NH4)3PO4
This has 3 ionic bonding and 1 covalent bonding making it 4 bond
Therefore i=4
For CaSO4
This has 1 metallic bond and 1 covalent bond making it 2 bond.
Therefore i=2
For LiCl
This has 1 metallic bond and 1 non metallic bond making it 2 bond.
Therefore i=2
For CH3OH
This has only 1 covalent bond.
Therefore i=1
MOLALITY:
(NH4)3PO4 = 0.75M
CaSO4= 1.0M
LiCl= 1.0M
CH3OH= 1.5M
FREEZING POINT DEPRESSION:
For (NH4)3PO4
∆T= 4×0.75×1.86=5.58°C
For CaSO4
∆T= 2×1.0×1.86=3.72°C
For LiCl
∆T = 2×1.0×1.86= 3.72°C
For CH3OH
∆T= 1×1.5×1.86=2.79°C
REMEMBER THE HIGHER THE FREEZING POINT DEPRESSION THE LOWER THE FREEZING POINT.
FREEZING POINT DEPRESSION IS THE CHANGE IN THE FREEZING POINT PROPORTIONAL TO THE AMOUNT OF SOLUTE ADDED THE THE SOLUTION.
THEREFORE THE ONE WITH THE LOWEST FREEZING POINT IS (NH4)3PO4
For this problem, we use the equation derived from Beer's Law as written below:
A = ∈LC,
where
A is the absorbance
∈ is the molar absorptivity
L is the path length of the cuvette
C is the concentration of the sample solution placed in the cuvette
To determine C, we have to know the rest of the parameters. Generally, the equation for C would be:
C = A/∈L = A/∈(1 cm)
C = A/∈
If you know the absorbance and the molar absorptivity in mol/L·cm, you can determine the value of C.