<u>Answer:</u> The electronic configuration of gallium is written below and number of valence electrons is 3.
<u>Explanation:</u>
Electronic configuration is defined as the representation of electrons around the nucleus of an atom.
Number of electrons in an atom is determined by the atomic number of that atom.
Valence electrons are defined as the electrons present in the outermost shell of an atom.
We are given:
An element Gallium having atomic number as 31.
Number of electrons = 31
Electronic configuration of Gallium is:
This element has 3 electrons in its outermost shell. So, the number of valence electrons is 3
Hence, the electronic configuration of gallium is written below and number of valence electrons is 3.
Answer:
1
Explanation:
For an ideal gas, the average kinetic energy is given by:
Ek = (3/2)*n*R*T
Where n is the number of moles, R is the gas constant (8.31 J/mol*K), and T the temperature. The gases have the same number of moles, and the same temperature, so they will have the same average kinetic energy:
Ek = (3/2)*1*8.31*300
Ek =3739.5 J
So, the ratio between then is 1.
Here you go:
Continent Polar - Cold and Dry
Maritime Polar - Cold and Humid
Arctic - Extremely Cold and Dry
Maritime Tropical- Warm and Humid
Hope this helps:)
The balanced chemical reaction is:
<span>2H2O= 2H2 + O2
</span>
We are given the amount of oxygen to be produced in the reaction. The starting point for the calculations will be this amount.
50 g ( 1 mol O2 / 32 g O2 ) ( 2 mol H2O / 1 mol O2 ) ( 18.01 g H2O / 1 mol H2O) = 56.28 g of H2O is needed.
Therefore, the correct answer is the last option.