Answer:
How does the equilibrium change with the removal of hydrogen (H2) gas from this equation? 2H2S ⇌ 2H2(g) + S2(g) A. ... Equilibrium shifts left to produce less reactant.
Explanation:
option A is the correct answer
Equilibrium shifts right to produce more product.
I hope it will help you.
B.
As you can see both NO and NH3 have 4 moles therefore it is 4:4 between the molecules or in other words a 1:1 ratio in simplest forms
Answer:
the friction?? or the movement
Explanation:
sense the salt is so light its easy to move
Moles are the division of the mass and the molar mass. The moles of mercury (ii) oxide in the decomposition reaction needed to produce oxygen are 0.781 moles.
<h3>What is a decomposition reaction?</h3>
A decomposition reaction is a breakdown of the reactant into simpler products. The decomposition of mercury (ii) oxide can be shown as:
2HgO(s) → 2Hg(l) + O₂(g)
From the reaction, it can be said that 2 moles of mercury (ii) oxide decomposes to produce 1 mole of oxygen.
The moles of oxygen that needs to be produced are calculated as:
Moles = mass ÷ molar mass
= 12.5 gm ÷ 32 gm/mol
= 0.39 moles
0.39 moles of oxygen are needed to be produced.
From the stoichiometric coefficient of the reaction, the moles of HgO is calculated as: 2 × 0.39 = 0.781 moles
Therefore, 0.781 moles of HgO are required in the reaction.
Learn more about moles here:
brainly.com/question/3801333
#SPJ4
Answer:
a. H20,because it experiences hydrogen bonding.