The state of the balloon:
When the balloon is submerged in the beaker, the amount of water in the beaker will get reduced.
What is Osmosis:
Based on the concentration of solutes on both sides of the membrane, water will flow through a permeable membrane in a specific direction.
<u><em>Hypertonic solution:</em></u>
It means that there are more solutes present in the surrounding environment than in the cell itself.
<u><em>Hypotonic solution:</em></u>
In a hypotonic solution, the concentration of solutes inside the cell is higher than that outside the cell.
- When comparing two solutions, the one with the larger solute concentration is hypertonic, and the one with the lower solute concentration is hypotonic. Isotonic solutions have an identical solute concentration.
- While the solution in the beaker is hypertonic, Meaning that will draw water molecules out of the cell. As water molecules move from a location of high water potential (dilute solution) to a region of reduced water potential (10% glucose solution), the water from the 5% glucose solution will flow into the 10% one (concentrated solution)
- This is the reason why the amount of water decreases when the balloon is submerged in the beaker.
Learn more about the glucose solution and permeability here,
brainly.com/question/14748422
#SPJ4
Answer : The mass of water produced will be 32.78 grams.
Explanation : Given,
Mass of
= 21.9 g
Molar mass of
= 72.15 g/mole
Molar mass of
= 18 g/mole
First we have to calculate the moles of
.

Now we have to calculate the moles of
.
The balanced chemical reaction will be,

From the balanced reaction we conclude that
As, 1 mole of
react to give 6 moles of 
So, 0.3035 moles of
react to give
moles of 
Now we have to calculate the mass of
.


Therefore, the mass of water produced will be 32.78 grams.
When you are asked a question like this, you can always ask yourself this question. Can I change it back after this change? For example, if you are burning wood, you cannot bring it back to wood after you burn it, therefore, it is a chemical change. However, if you boil and evaporate water, you can make the water condense again back into its liquid form. In this case, you cannot bring the tomato back to its raw state. Therefore, cooking raw tomatoes is a chemical change.