The ions of Noble gases, <em>group VIII</em> elements have a full octet configuration on their outermost shell and as such are highly stable.
The periodic table is a systematic arrangement of elements in order of their atomic numbers into a set of 8 columns each called groups and a set of 7 rows each called a period.
Elements are arranged in different groups according to the number of Valence electrons they have.
- For instance, elements in the group I of the periodic table are highly electropositive and as such are highly reactive.
The same is evident in group 7 elements are highly electronegative and have high electron affinity and as such are unstable and reactive.
- However, Noble gases, <em>group VIII</em> elements have a full octet configuration on their outermost shell and as such are highly stable.
Consequently, the <em>Noble gases ion</em> has a stable Valence electron configuration.
Read more:
brainly.com/question/5336231
Answer:
Option C. the sharing of electrons between atoms
Explanation:
Covalent bond is a type of bond in which the reacting element share their valence electrons in order to attain the noble gas configuration.
Explanation :
In thermodynamics, a system is region or part of space which is being studied and observed while the surrounding is the region or space around the system which interacts with the system.
Here in the experiment ,system which is observed is reaction or changes when citric acid and sodium bicarbonate are mixed together. And the mixing is carried out in the calorimeter which serves as a surrounding around the system.
The reason behind the using the calorimeter is measure the energy change occurring during the reaction.
Answer:
10−8 M.
Explanation:
In this problem we are given pH and asked to solve for the hydrogen ion concentration. Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH,
by exponentiating both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × In this problem we are given pH and asked to solve for the hydrogen ion concentration. Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH,
by exponentiating both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × 10−8 M.
Answer:
16 mol NaCl.
Explanation:
Do the train track method to cancel out all the units except moles of NaCl on top. Remember one mole of any gas occupies 22.4 L at STP.
179.2 L CO2 x 1 mol CO2/22.4 L CO2 x 2 mol NaCl/1 mol CO2
= 16 mol NaCl