Answer:

Explanation:
We are asked to find the mass of a sample of metal. We are given temperatures, specific heat, and joules of heat, so we will use the following formula.

The heat added is 4500.0 Joules. The mass of the sample is unknown. The specific heat is 0.4494 Joules per gram degree Celsius. The difference in temperature is found by subtracting the initial temperature from the final temperature.
- ΔT= final temperature - initial temperature
The sample was heated <em>from </em> 58.8 degrees Celsius to 88.9 degrees Celsius.
- ΔT= 88.9 °C - 58.8 °C = 30.1 °C
Now we know three variables:
- Q= 4500.0 J
- c= 0.4494 J/g°C
- ΔT = 30.1 °C
Substitute these values into the formula.

Multiply on the right side of the equation. The units of degrees Celsius cancel.

We are solving for the mass, so we must isolate the variable m. It is being multiplied by 13.52694 Joules per gram. The inverse operation of multiplication is division, so we divide both sides by 13.52694 J/g

The units of Joules cancel.


The original measurements have 5,4, and 3 significant figures. Our answer must have the least number or 3. For the number we found, that is the ones place. The 6 in the tenth place tells us to round the 2 up to a 3.

The mass of the sample of metal is approximately <u>333 grams.</u>
Answer:
Bubbling/Foaming
Heat is produced
Explanation:
A chemical reaction has occurred if
1. There is a change in colour
2. Formation of a precipitate
3. Formation of a gas
4. Change in temperature
5. Change of smell
In the reaction of hydrogen peroxide and potassium iodide, the solution quickly rises which shows the formation of gas. This means it is a chemical reaction.
The beaker/test tube/whatever you used should also become warm because it is an exothermic reaction. This means its a chemical reaction
Chemical weathering is the weakening and subsequent disintegration of rock by chemical reactions.
2Al+3Cl2==>2AlCl3
(4mol Al)(2 mol AlCl3/2 mol Al)=4 mole AlCl3