Moles are the division of the mass and the molar mass. The moles of mercury (ii) oxide in the decomposition reaction needed to produce oxygen are 0.781 moles.
<h3>What is a decomposition reaction?</h3>
A decomposition reaction is a breakdown of the reactant into simpler products. The decomposition of mercury (ii) oxide can be shown as:
2HgO(s) → 2Hg(l) + O₂(g)
From the reaction, it can be said that 2 moles of mercury (ii) oxide decomposes to produce 1 mole of oxygen.
The moles of oxygen that needs to be produced are calculated as:
Moles = mass ÷ molar mass
= 12.5 gm ÷ 32 gm/mol
= 0.39 moles
0.39 moles of oxygen are needed to be produced.
From the stoichiometric coefficient of the reaction, the moles of HgO is calculated as: 2 × 0.39 = 0.781 moles
Therefore, 0.781 moles of HgO are required in the reaction.
Learn more about moles here:
brainly.com/question/3801333
#SPJ4