Answer:
-1.43 m/s relative to the shore
Explanation:
Total momentum must be conserved before and after the run. Since they were both stationary before, their total speed, and momentum, is 0, so is the total momentum after the run off:
where
are the mass of the swimmer and raft, respectively.
are the velocities of the swimmer and the raft after the run, respectively. We can solve for
So the recoil velocity that the raft would have is -1.43 m/s after the swimmer runs off, relative to the shore
1.) because then people can evacuate the area in the path<span> of the hurricane.
2.) </span><span>At higher altitudes, water vapor starts to condense into clouds and rain, releasing heat that warms the surrounding air, Which makes it rise as well. Warmer waters feed more energetic storms.
3.) </span> <span>A hurricane starts off as a series of thunderstorms which intensify as it moves over the warm and humid sea. The humidity is at a constant level and so it continues to grow over the sea. Any kind of decrease or increase in humidity can change the strength of a hurricane.
4.) </span><span>Actually, tropical cyclones need weak winds. If the atmospheric winds are even remotely strong, they will act to cut back the system and prevent the convection from wrapping around the center.
</span><span>Annndd...
5.) That hard to tell, it could be too much. Though I am going to go with yes. Cyclones need weak winds and good amount humidity.</span><span>
</span>
I think number 1 is incorrect I believe that answer is D. Number 6 I believe would be B. The rest seem to be correct.
Answer:
Period refers to the time for something to happen and is measured in seconds/cycle
<span>In an internal combustion engine, heat flow into a gas causes it to expand.
The application of direct force to specific parts of the engine will produce </span>expansion of the high-temperature<span> and high-</span>pressure<span> gases. Which will transform the chemical energy from the fuel (such as gasoline or oi) into mechanical energy.</span>