When you double capacitance and inductance, the new resonance frequency becomes f/2.
The resonance frequency of RLC series circuit, is the frequency at which the capacity reactance is equal to inductive reactance.
It can also be defined as the natural frequency of an object where it tends to vibrate at a higher amplitude.
Xc = Xl
which gives the value for resonance frequency:

where;
f is the resonance frequency
L is the inductance
C is the capacitance
When you double capacitance and inductance, the new resonance frequency becomes;




Thus from above,
When you double capacitance and inductance, the new resonance frequency becomes f/2.
Learn more about resonance frequency here:
<u>brainly.com/question/13040523</u>
#SPJ4
Answer:
Greatest gravitational energy is at "C".
The planet has to do work "against" the field to get to "C".
Also, if m v R (angular momentum) is constant then as R increases v must decrease for this term to be constant and KE = 1/2 M v^2 must decrease also to get to point C.
Answer:
the speed of the waves is 150 cm/s
Explanation:
Given;
frequency of the wave, f = 10 Hz = 10
distance between 4 nodes, L = 15.0 cm
The wavelength (λ) of the wave is calculated as follows;
Node to Node = λ/2
L = 2(Node to Node) = (4 Nodes) = 2 (λ/2) = λ
Thus, λ = L = 15.0 cm
The speed (v) of the wave is calculated as follows;
v = fλ
v = 10 Hz x 15.0 cm
v = 150 cm/s
Therefore, the speed of the waves is 150 cm/s
Answer:
the kinetic energy lost due to friction is 22.5 J
Explanation:
Given;
mass of the block, m = 0.2 kg
initial velocity of the block, u = 25 m/s
final velocity of the block, v = 20 m/s
The kinetic energy lost due to friction is calculated as;

Therefore, the kinetic energy lost due to friction is 22.5 J
A). very large
B). very small
These are both wishy-washy words ... words that mean different things
to different people, and may even mean different things to the same person
at different times.
Even if everybody agreed on the meaning of these words, we wouldn't
have any idea which one may apply to the rover, because there's nothing
in the picture that gives any size reference ! We don't know from the picture
whether this thing is the size of a school book or a school bus. Or somewhere
in between.
C). very mathematical
What in the world does this mean ? ?
I don't see a single number or math symbol anywhere in the drawing.
I don't think this is the correct choice.
D). very complex
In the drawing, there are thirteen different labels of things,
and eight of them have such long names that only their initials
are shown.
This is one complicated combination of many different machines.
I think this is the best choice of description.