Answer:
A. 181.24 N
Explanation:
The magnitude of hte electrostatic force between two charged objects is given by the equation

where
k is the Coulomb's constant
q1, q2 are the magnitudes of the two charges
r is the separation between the charges
In this problem, we have:
is the magnitude of the 1st charge
is the magnitude of the 2nd charge
r = 2.5 cm = 0.025 m is the separation between the charges
Therefore, the magnitude of the electric force is:

So, the closest answer is
A) 181.24 N
No. Mechanical energy is not conserved. There's quite a bit of friction on the slide. So some of the potential energy is lost to heat on the way down, and the child arrives at the bottom with hot pants and less kinetic energy than you might expect.
The correct answer is:
<span>C: in the protons and neutrons of an atom
In fact, the nuclear energy refers to the binding energy of the nucleons (protons and neutrons) of an atom. The protons and the neutrons are held together by the strong nuclear interaction, one of the four fundamental forces of nature, and the energy associated to this interaction is called nuclear energy.
</span>
T = 3.5 secs
Velocity (v) = g * t = 10 m/s^2 * 3.5 sec = 35 m/s
The Archimedes principle is a principle that is expressed as a law that states that a body immersed in a fluid, whether fully or partially, is subject to an upward force of the same magnitude as the weight of the fluid it displaces.
<em>Hope this helps :)</em>