Answer:
Length:8 m
Width:3 m
Step-by-step explanation:
<u><em>The complete question is</em></u>
If the perimeter of a rectangle is 22 meters, and the perimeter of a right triangle is 12 meters (the sides of the triangle are half the length of the rectangle, the width of the rectangle, and the hypotenuse is 5 meters). How do you solve for L and W, the dimensions of the rectangle.
step 1
<em>Perimeter of rectangle</em>
we know that
The perimeter of rectangle is equal to

we have

so

Simplify
-----> equation A
step 2
Perimeter of triangle
The perimeter of triangle is equal to


so

Multiply by 2 both sides

----> equation B
Solve the system of equations by graphing
Remember that the solution is the intersection point both graphs
using a graphing tool
The solution is the point (8,3)
see the attached figure
therefore
The dimensions of the rectangle are
Length:8 m
Width:3 m
Complete question:
He amount of time that a customer spends waiting at an airport check-in counter is a random variable with mean 8.3 minutes and standard deviation 1.4 minutes. Suppose that a random sample of n equals 47 customers is observed. Find the probability that the average time waiting in line for these customers is
a) less than 8 minutes
b) between 8 and 9 minutes
c) less than 7.5 minutes
Answer:
a) 0.0708
b) 0.9291
c) 0.0000
Step-by-step explanation:
Given:
n = 47
u = 8.3 mins
s.d = 1.4 mins
a) Less than 8 minutes:

P(X' < 8) = P(Z< - 1.47)
Using the normal distribution table:
NORMSDIST(-1.47)
= 0.0708
b) between 8 and 9 minutes:
P(8< X' <9) =![[\frac{8-8.3}{1.4/ \sqrt{47}}< \frac{X'-u}{s.d/ \sqrt{n}} < \frac{9-8.3}{1.4/ \sqrt{47}}]](https://tex.z-dn.net/?f=%20%5B%5Cfrac%7B8-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%3C%20%5Cfrac%7BX%27-u%7D%7Bs.d%2F%20%5Csqrt%7Bn%7D%7D%20%3C%20%5Cfrac%7B9-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D)
= P(-1.47 <Z< 6.366)
= P( Z< 6.366) - P(Z< -1.47)
Using normal distribution table,

0.9999 - 0.0708
= 0.9291
c) Less than 7.5 minutes:
P(X'<7.5) = ![P [Z< \frac{7.5-8.3}{1.4/ \sqrt{47}}]](https://tex.z-dn.net/?f=%20P%20%5BZ%3C%20%5Cfrac%7B7.5-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D%20)
P(X' < 7.5) = P(Z< -3.92)
NORMSDIST (-3.92)
= 0.0000
Answer:
The difference of the two means is not significant, so the null hypothesis must be rejected.
Answer:
37
Step-by-step explanation:
f(4) just means use 4 for x. The table has all the x's across the top (sometimes they are in columns instead) The f(x) in the second row is the output that goes with each x. When x is 4, the f(x) is 37.
All is one math sentence:
f(4) = 37
Answer:
Two imaginary solutions:
x₁= 
x₂ = 
Step-by-step explanation:
When we are given a quadratic equation of the form ax² +bx + c = 0, the discriminant is given by the formula b² - 4ac.
The discriminant gives us information on how the solutions of the equations will be.
- <u>If the discriminant is zero</u>, the equation will have only one solution and it will be real
- <u>If the discriminant is greater than zero</u>, then the equation will have two solutions and they both will be real.
- <u>If the discriminant is less than zero,</u> then the equation will have two imaginary solutions (in the complex numbers)
So now we will work with the equation given: 4x - 3x² = 10
First we will order the terms to make it look like a quadratic equation ax²+bx + c = 0
So:
4x - 3x² = 10
-3x² + 4x - 10 = 0 will be our equation
with this information we have that a = -3 b = 4 c = -10
And we will find the discriminant: 
Therefore our discriminant is less than zero and we know<u> that our equation will have two solutions in the complex numbers. </u>
To proceed to solve the equation we will use the general formula
x₁= (-b+√b²-4ac)/2a
so x₁ = 
The second solution x₂ = (-b-√b²-4ac)/2a
so x₂=
These are our two solutions in the imaginary numbers.