I'm not sure what your question is. But, the half life is the amount of time required for half the material to decay. For U238 this is 4.5 billion years, whilst for Fr-223 (Francium) its about 22 minutes. To calculate the time for something to decay you need to use the equation:
Mass (after time t) = Mass (initial) * (0.5)^(time/half life)
Hope this helps
Answer: 2000 watts
Explanation:
Given that,
power = ?
Weight of object = 200-N
height = 4 m
Time = 4 s
Power is the rate of work done per unit time i.e Power is simply obtained by dividing work by time. Its unit is watts.
i.e Power = work / time
(since work = force x distance, and weight is the force acting on the object due to gravity)
Then, Power = (weight x distance) / time
Power = (200N x 4m) / 4s
Power = 8000Nm / 4s
Power = 2000 watts
Thus, 2000 watts of power is needed to lift the object.
Answer:
5m
Explanation:

Use the Pythagorean theorem to calculate the long edge of the triangle, which would be his displacement.
Answer: 4.7m/s²
Explanation:
According to newton's first law,
Force = mass × acceleration
Since we are given more the one force, we will take the resultant of the two vectors.
Mass = 2.0kg
F1+F2 = (3i-8j)+(5i+3j)
Adding component wise, we have;
F1+F2 = 3i+5i-8j+3j
F1+F2 = 8i-5j
Resultant of the sum of the forces will be;
R² = (8i)²+(-5j)²
Since i.i = j.j = 1
R² = 8²+5²
R² = 64+25
R² = 89
R = √89
R = 9.4N
Our resultant force = 9.4N
Substituting in the formula
F = ma
9.4 = 2a
a = 9.4/2
a = 4.7m/s²
Therefore, magnitude of the acceleration of the particle is 4.7m/s²
Acceleration = (change in speed) / (time for the change)
= (49 m/s) / (5 seconds)
= (49 / 5) m/s / s
= 9.8 m/s²