A transverse wave and a longitudinal wave.
Transverse:wave particles move at medium speed in perpendicular to the direction that the waves move
Longitudinal:wave particles move at medium speed in parallel to the direction that the wave moves
Hope this helps ^-^
You could be lying completley still on your bed, and all though it seems you are at rest, you are moving along with the earth around the sun and hence are motion. This is why 'being at rest' is more of a relative term. Hope this helps!
1750 meters.
First, determine how long it takes for the kit to hit the ground. Distance over constant acceleration is:
d = 1/2 A T^2
where
d = distance
A = acceleration
T = time
Solving for T, gives
d = 1/2 A T^2
2d = A T^2
2d/A = T^2
sqrt(2d/A) = T
Substitute the known values and calculate.
sqrt(2d/A) = T
sqrt(2* 1500m / 9.8 m/s^2) = T
sqrt(3000m / 9.8 m/s^2) = T
sqrt(306.122449 s^2) = T
17.49635531 s = T
Rounding to 4 significant figures gives 17.50 seconds. Since it will take
17.50 seconds for the kit to hit the ground, the kit needs to be dropped 17.50
seconds before the plane goes overhead. So just simply multiply by the velocity.
17.50 s * 100 m/s = 1750 m
i think its d im not sure