Answer:
486nm
Explanation:
in order for an electron to transit from one level to another, the wavelength emitted is given by Rydberg Equation which states that
![\frac{1}{wavelength}=R.[\frac{1}{n_{f}^{2} } -\frac{1}{n_{i}^{2} }] \\n_{f}=2\\n_{i}=4\\R=Rydberg constant =1.097*10^{7}m^{-1}\\subtitiute \\\frac{1}{wavelength}=1.097*10^{7}[\frac{1}{2^{2} } -\frac{1}{4^{2}}]\\\frac{1}{wavelength}= 1.097*10^{7}*0.1875\\\frac{1}{wavelength}= 2.06*10^{6}\\wavelength=4.86*10{-7}m\\wavelength= 486nm\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bwavelength%7D%3DR.%5B%5Cfrac%7B1%7D%7Bn_%7Bf%7D%5E%7B2%7D%20%7D%20-%5Cfrac%7B1%7D%7Bn_%7Bi%7D%5E%7B2%7D%20%7D%5D%20%5C%5Cn_%7Bf%7D%3D2%5C%5Cn_%7Bi%7D%3D4%5C%5CR%3DRydberg%20constant%20%3D1.097%2A10%5E%7B7%7Dm%5E%7B-1%7D%5C%5Csubtitiute%20%5C%5C%5Cfrac%7B1%7D%7Bwavelength%7D%3D1.097%2A10%5E%7B7%7D%5B%5Cfrac%7B1%7D%7B2%5E%7B2%7D%20%7D%20-%5Cfrac%7B1%7D%7B4%5E%7B2%7D%7D%5D%5C%5C%5Cfrac%7B1%7D%7Bwavelength%7D%3D%201.097%2A10%5E%7B7%7D%2A0.1875%5C%5C%5Cfrac%7B1%7D%7Bwavelength%7D%3D%202.06%2A10%5E%7B6%7D%5C%5Cwavelength%3D4.86%2A10%7B-7%7Dm%5C%5Cwavelength%3D%20486nm%5C%5C)
Hence the photon must possess a wavelength of 486nm in order to send the electron to the n=4 state
If the potential is given by v = xy - 3z-2, then the electric field has a y-component of X
When the charge is present in any form, a point in space has an electric field that is connected to it. The value of E, often known as the electric field strength, electric field intensity, or just the electric field, expresses the strength and direction of the electric field.
Each location in space where a charge exists in any form can be considered to have an electric field attached to it. The electric force per unit charge is another name for an electric field. The electric field's equation is given as E = F / Q. Volts per meter (V/m) is the electric field's SI unit. Newton's per coulomb unit is the same as this one.
To learn more about electric field please visit-brainly.com/question/15800304
#SPJ4
Answer:
λ = 8.88 x 10⁻⁷ m = 888 nm
Explanation:
The energy band gap is given as:
Energy Gap = E = 1.4 eV
Converting this to Joules (J)
E = (1.4 eV)(1.6 x 10⁻¹⁹ J/1 eV)
E = 2.24 x 10⁻¹⁹ J
The energy required for photovoltaic generation is given as:
E = hc/λ
where,
h = Plank's Constant = 6.63 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light = ?
Therefore,
2.24 x 10⁻¹⁹ J = (6.63 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/λ
λ = (6.63 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(2.24 x 10⁻¹⁹ J)
<u>λ = 8.88 x 10⁻⁷ m = 888 nm</u>
Most geologists accept radiometric dating techniques as valid because radioactive elements decay at a constant and measurable rate.
Answer: Option C
<u>Explanation:</u>
Scientists prefer radioactive dating to carbon dating because it is more accurate in measuring. The analysis depends upon the radioactive decay of radioactive isotopes of any matter in a given rock or soil.
The parent atoms and daughter atoms are compared while studying, and hence age can be calculated easily. Radioactive decay depends upon the given half-life of the atom, which is a constant and is known. So, it would be very easy to calculate the number of progeny atoms and parent atoms and find out their age.