Answer:x=23.4 cm
Explanation:
Given
mass of block 
inclination 
coefficient of static friction 
coefficient of kinetic friction 
distance traveled 
spring constant 
work done by gravity+work done by friction=Energy stored in Spring






Answer:
0.853 m/s
Explanation:
Total energy stored in the spring = Total kinetic energy of the masses.
1/2ke² = 1/2m'v².................... Equation 1
Where k = spring constant of the spring, e = extension, m' = total mass, v = speed of the masses.
make v the subject of the equation,
v = e[√(k/m')].................... Equation 2
Given: e = 39 cm = 0.39 m, m' = 0.4+0.4 = 0.8 kg, k = 1.75 N/cm = 175 N/m.
Substitute into equation 2
v = 0.39[√(1.75/0.8)
v = 0.39[2.1875]
v = 0.853 m/s
Hence the speed of each mass = 0.853 m/s
Answer:
wavelength = 24 m
Period = 10 s
f = 0.1 Hz
Amplitude = 4 m
Explanation:
Wavelength:
Since the boats are at crest and trough, respectively at the same time. Hence, the horizontal distance between them is the wavelength of the wave:
<u>wavelength = 24 m</u>
Period:
The period is given as:

<u>Period = 10 s</u>
<u></u>
Frequency:
The frequency is given as:

<u>f = 0.1 Hz</u>
<u></u>
Amplitude:
Amplitude will be half the distance between extreme points, that is, crest and trough:
Amplitude = 8 m/2
<u>Amplitude = 4 m</u>
The correct answer is 1.25 because it is 1/2 of 1 1/2 and that is 1.25.