1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeeva-Olga [200]
3 years ago
10

Example of energy transfer from potential to kinetic and back

Physics
1 answer:
Alex_Xolod [135]3 years ago
5 0

Swimmer and Divers. The Potential energy is transferred into Kinetic energy, and allows the diver to submerge into the water. The Kinetic energy then allows the diver to submerge and dive into the water. Potential energy however, is needed to allow the diver to get back out of the water after diving to get up and go and dive again, and then the Kinetic energy is transferred back to Potential energy to repeat the process.

Hope :) -Emilie Xo this is right and it helps! Xo

You might be interested in
What do you think the value will be for the car's distance
lions [1.4K]

Answer:

student A

Explanation:

It's going the same value

8 0
3 years ago
What is the appropriate term for the movement of the orange liquid in the lava lamp animation?
Taya2010 [7]
Heat energy is responsible for it.It is because the waxy substance present in the lava lamp get hot at its bottom and cold on its top and this process is mostly like convection
5 0
3 years ago
PLEASE HELP FAST Five-gram samples of brick and glass are at room temperature. Both samples receive equal amounts of energy due
suter [353]

Answer:

1.The temperature of each sample will increase by the same amount

Explanation:

This is because, since their specific heat capacities are the same and we have the same mass of each substance, and the same amount of energy due to heat flow is supplied to both the glass and brick at room temperature, their temperatures would thereby increase by the same amount.

This is shown by the calculation below

Q = mcΔT

ΔT = Q/mc where ΔT = temperature change, Q = amount of heat, m = mass of substance and c = specific heat capacity of substance.

Since Q, m and c are the same for both substances, thus ΔT will be the same.

So, the temperature of each sample will increase by the same amount

6 0
2 years ago
Define statistics and give an example of three types of variables that researchers study using statistics.
MA_775_DIABLO [31]
This is the answer you’re looking for

8 0
2 years ago
An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process,
Sedbober [7]

Answer:

a.T_3=1723.8kPa\\b.n=0.563\\c.MEP=674.95kPa

Explanation:

a. Internal energy and the relative specific volume at s_1 are determined  from A-17:u_1=214.07kJ/kg, \ \alpha_r_1=621.2.

The relative specific volume at s_2 is calculated from the compression ratio:

\alpha_r_2=\frac{\alpha_r_1}{r}\\=\frac{621.2}{16}\\=38.825

#from this, the temperature and enthalpy at state 2,s_2 can be determined using interpolations T_2=862K and h_2=890.9kJ/kg. The specific volume at s_1 can then be determined as:

\alpha_1=\frac{RT_1}{P_1}\\\\=\frac{0.287\times 300}{95} m^3/kg\\0.906316m^3/kg

Specific volume,s_2:

\alpha_2=\frac{\alpha_1}{r}\\=\frac{0.906316}{16}m^3/kg\\=0.05664m^3/kg

The pressures at s_2 \ and\  s_3 is:

P_2=P_3=\frac{RT_2}{\alpha_2}\\\\=\frac{0.287\times862}{0.05664}\\=4367.06kPa

.The thermal efficiency=> maximum temperature at s_3 can be obtained from the expansion work at constant pressure during s_2-s_3

\bigtriangleup \omega_2_-_3=P(\alpha_3-\alpha_2)\\R(T_3-T_2)=P\alpha(r_c-1)\\T_3=T_2+\frac{P\alpha_2}{R}(r_c-1)\\\\=(862+\frac{4367\times 0.05664}{0.287}(2-1))K\\=1723.84K

b.Relative SV and enthalpy  at s_3 are obtained for the given temperature with interpolation with data from A-17 :a_r_3=4.553 \ and\  h_3=1909.62kJ/kg

Relative SV at s_4 is

a_r_4=\frac{r}{r_c}\alpha _r_3

==\frac{16}{2}\times4.533\\=36.424

Thermal efficiency occurs when the heat loss is equal to the internal energy decrease and heat gain equal to enthalpy increase;

n=1-\frac{q_o}{q_i}\\=1-\frac{u_4-u_1}{h_3-h_2}\\=1-\frac{65903-214.07}{1909.62-890.9}\\=0.563

Hence, the thermal efficiency is 0.563

c. The mean relative pressure is calculated from its standard definition:

MEP=\frac{\omega}{\alpa_1-\alpa_2}\\=\frac{q_i-q_o}{\alpha_1(1-1/r)}\\=\frac{1909.62-890.9-(65903-214.7)}{0.90632(1-1/16)}\\=674.95kPa

Hence, the mean effective relative pressure is 674.95kPa

3 0
3 years ago
Other questions:
  • As a killer whale swims toward a seal, it sends out sound waves to determine the direction the seal is moving. When the
    14·1 answer
  • Please Help me!! A baseball with a mass of 0.152 kg is moving horizontally at 32.0 m/s [E], when it is struck by a bat for 0.002
    5·1 answer
  • Approximately what percentage of Earth’s radius is represented by the crust?
    7·1 answer
  • A 1.5m wire carries a 6 A current when a potential difference of 70 V is applied. What is the resistance of the wire?
    9·1 answer
  • A body is moving with an acceleration of 60 m/s^2(square).If the force applied to the body is 4200N.Calculate its mass.​
    10·1 answer
  • Kinetic energy can be calculated using the formula KE = 1/2mv2. What is the kinetic energy of a bicycle that has a mass of 20 kg
    9·1 answer
  • A ball rolls with a speed of 3 m/s across a level table that is 1.5m above the floor. How far along the floor is the landing spo
    14·1 answer
  • 1.14 Which of the following is an example of a force without touching? A A boy pushing a trolley. B The mass of a car. C с A mag
    13·1 answer
  • Do we always see the same side of the moon from earth?.
    15·1 answer
  • An object has a moving energy of 25 J. If I do 25 J of work on the object, how much energy does it have now?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!