Answer:
33= 0+10 * t so t = 33 / 10 = 3.3 hrs
Answer:
v = 12.52 [m/s]
Explanation:
To solve this problem we must use the energy conservation theorem. Which tells us that potential energy is transformed into kinetic energy or vice versa. This is more clearly as the potential energy decreases the kinetic energy increases.
Ep = Ek
where:
Ep = potential energy [J] (units of joules]
Ek = kinetic energy [J]
Ep = m*g*h
where:
m = mass of the rock = 45 [g] = 0.045 [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = (20 - 12) = 8 [m]
Ek = 0.5*m*v²
where:
v = velocity [m/s]
The reference level of potential energy is taken as the ground level, at this level the potential energy is zero, i.e. all potential energy has been transformed into kinetic energy. In such a way that when the Rock has fallen 12 [m] it is located 8 [m] from the ground level.
m*g*h = 0.5*m*v²
v² = (g*h)/0.5
v = √(9.81*8)/0.5
v = 12.52 [m/s]
Answer:
C. His victory against a superior British foe inspired the American troops.
Explanation:
John Paul Jones is considered the hero in the Revolutionary War. He is known as the Father of the US Navy.
In the Revolutionary War, Jones sided with the American colonists against the British and took hold of naval ships. In 1779, when the British warship <em>Serapis</em> was in conflict with the American warship <em>Bon Homme Richard, </em>Jones plugged the American warship with the Britisher's warship and tossed a grenade into the opponent warship. Thus when Jones was victorious in the war, this boosted the American spirits for the war.
Therefore, option C is the correct answer.
Answer:
Thermopile is an electronic device that converts thermal energy into electrical energy.
A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current.
Newton’s 2nd law states that Force is equal to
the product of mass (m) and acceleration (a):
F = m a --->
1
While in magnetic forces, force can also be expressed as:
F = q v B --->
2
where,
q = total charge
v = velocity = 45 cm / s = 0.45 m / s
B = the magnetic field = 85 T
First we solve for the total charge, q:
q = 3.8 × 10^-23 g (1 mol / 23 g) (6.022 × 10^23 electrons / mol) (1.602 ×
10^-19 C / electron)
q = 1.594 × 10^-19 C
We equate equations 1 and 2 then solve for acceleration a:
m a = q v B
a = q v B / m
a = [1.594 × 10^-19 C * 0.45 m / s * 85 T] / 3.8 × 10-26 kg
a = 160,437,862.2 m/s^2
Therefore the maximum acceleration of Na ions is about 160 × 10^6 m/s^2.