For an ideal transformer power loss is assumed to be zero
i.e. the power in primary coil due to input voltage must be equal to power in secondary coil due to output voltage
this can be written in form of equation

here we know that


![i_1 = 10 A{/tex]now we will use above equation[tex]140*3.5 = 10 * V_1](https://tex.z-dn.net/?f=i_1%20%3D%2010%20A%7B%2Ftex%5D%3C%2Fp%3E%3Cp%3Enow%20we%20will%20use%20above%20equation%3C%2Fp%3E%3Cp%3E%5Btex%5D140%2A3.5%20%3D%2010%20%2A%20V_1)

So primary coil voltage is 49 Volts
You can write the equation in 3 different ways, depending on which quantity you want to be the dependent variable. Any one of the three forms can be derived from either of the other two with a simple algebra operation. They're all the same relationship, described by "Ohm's Law".
==> Current = (potential difference) / (resistance)
==> Potential difference = (current) x (resistance)
==> Resistance = (potential difference) / (resistance)
Answer:
0.65 kg*m/s and 0.165 kg*m/s
Explanation:
Step one:
given data
mass m= 0.5kg
initial velolcity u=1.3m/s
final velocity v= 0.97m/s
Required
The change in momentum
Step two:
We know that the expression for impulse is given as
Ft= mv
Ft= 0.5*1.3
Ft= 0.65 kg*m/s
The expression for the change in momentum is given as
P= mΔv
substitute
Pt= 0.5*(1.3-0.97)
Pt= 0.5*0.33
Pt=0.165 kg*m/s