Answer:
The force of friction acting on block B is approximately 26.7N. Note: this result does not match any value from your multiple choice list. Please see comment at the end of this answer.
Explanation:
The acting force F=75N pushes block A into acceleration to the left. Through a kinetic friction force, block B also accelerates to the left, however, the maximum of the friction force (which is unknown) makes block B accelerate by 0.5 m/s^2 slower than the block A, hence appearing it to accelerate with 0.5 m/s^2 to the right relative to the block A.
To solve this problem, start with setting up the net force equations for both block A and B:

where forces acting to the left are positive and those acting to the right are negative. The friction force F_fr in the first equation is due to A acting on B and in the second equation due to B acting on A. They are opposite in direction but have the same magnitude (Newton's third law). We also know that B accelerates 0.5 slower than A:

Now we can solve the system of 3 equations for a_A, a_B and finally for F_fr:

The force of friction acting on block B is approximately 26.7N.
This answer has been verified by multiple people and is correct for the provided values in your question. I recommend double-checking the text of your question for any typos and letting us know in the comments section.
Answer:
Explanation:
It can be increased by: increasing the rate of rotation. Increasing the strength of the magnetic field. Increasing the number of turns on the coil.
Hope this helps
plz mark it as brainliest!!!!!!
The range of the piece of paper is C) 1.4 m
Explanation:
The motion of the piece of paper is the motion of a projectile, which consists of two separate motions:
- A uniform motion along the horizontal direction, with constant velocity
- A uniformly accelerated motion along the vertical direction, with constant acceleration (the acceleration of gravity,
)
From the equation of motion, it is possible to find an expression for the range (the total horizontal distance covered) of a projectile, which is given by:

where
u is the initial velocity
is the angle of projection
g is the acceleration of gravity
For the piece of paper in this problem,
u = 4.3 m/s

Substituting,

Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly