Answer:
F_total = 29.4 N, directed to the right of particle 2
Explanation:
We must solve this problem in parts, first we calculate each force and then we apply Newton's law to add the forces.
Let's use Coulomb's law to calculate each force
F =
particles 1 and 2
q₁ = 8.0 10⁻⁶ C, q₂ = 3.5 10⁻⁶ C x₁₂ = 0.10 m
F₁₂ = 9 10⁹ 8.0 3.5 10⁻¹² / 0.1²
F₁₂ = 2.59 10¹ N
Since the two charges are of the same sign, this force is repulsive and is directed towards the positive side of the x axis.
particles 2 and 3
q₂ = 3.6 10⁻⁶ C, q₃ = 2.5 10⁻⁶ C, x₂₃ = 0.15 m
we calculate
F₂₃ = 9 10⁹ 3.5 2.5 10⁻¹²/ 0.15²
F₂₃ = 3.5 N
as the charge is of different sign, the force is attractive, therefore it is directed to the right of the load 2
Now we add the forces as vectors
F_total = ∑ F = F₁₂ + F₂₃
F_total = 25.2 +3.5
F_total = 29.4 N
directed to the right of particle 2
Answer:
Explanation:
From the question we are told that mass
Thin layer radius
Generally the expression for ths solution is given as
Xcm =(m*0 =m(-2R))/2m =-mR/(2m)=-R/2
the center of mass will not move at initial state
Considering the center of mass of both bodies
Therefore the enclosing layer moves
If there's any point in a circuit where the current has a choice
of which branch to take, then you have a <em>parallel circuit</em>.