In my view, correct answer should look like this: Although wave power does not produce pollution, some people may not want to invest in it because it is <span>prone to storm damage and limited to particular areas of the ocean.</span>
Answer:
r = 4.24x10⁴ km.
Explanation:
To find the radius of such an orbit we need to use Kepler's third law:

<em>where T₁: is the orbital period of the geosynchronous Earth satellite = 1 d, T₂: is the orbital period of the moon = 0.07481 y, r₁: is the radius of such an orbit and r₂: is the orbital radius of the moon = 3.84x10⁵ km. </em>
From equation (1), r₁ is:
Therefore, the radius of such an orbit is 4.24x10⁴ km.
I hope it helps you!
Answer:
The speed of q₂ is 
Explanation:
Given that,
Distance = 0.4 m apart
Suppose, A small metal sphere, carrying a net charge q₁ = −2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q₂ = −8μC and mass 1.50g, is projected toward q₁. When the two spheres are 0.800m apart, q₂ is moving toward q₁ with speed 20m/s.
We need to calculate the speed of q₂
Using conservation of energy



Put the value into the formula






Hence, The speed of q₂ is 
The earth's liquid outer core is the major cause of the earth’s magnetic field.
<h3>
What is magnetic field?</h3>
The magnetic influence on moving electric charges, electric currents, and magnetic materials is described by a magnetic field, a vector field. A force acting on a charge while it travels through a magnetic field is perpendicular to both the charge's motion and the magnetic field. The magnetic field of a permanent magnet attracts or repels other magnets as well as ferromagnetic elements like iron. A magnetic field that varies with location will also exert a force on a variety of non-magnetic materials by changing the velocity of those particles' outer electrons. Electric currents, like those utilised in electromagnets, and electric fields that change over time produce magnetic fields that surround magnetised things.
To learn more about magnetic field,visit:
brainly.com/question/11514007
#SPJ4
Answer:
gas is dioatomic
T_f = 330.0 K

Explanation:
Part 1
below equation is used to determine the type Gas by determining
value

where V_i and V_f is initial and final volume respectively
and P_i and P_f are initial and final pressure


\gamma = 1.38
therefore gas is dioatomic
Part 2
final temperature in adiabatic process is given as
](https://tex.z-dn.net/?f=T_f%20%3D%20T_i%2A%5B%5Cfrac%7Bv_i%7D%7BV_f%7D%5D%28%5E%5Cgamma-1%29)
substituing value to get final temperature
![T_f = 260*[\frac{151}{80.6}]^ {(1.38-1)}](https://tex.z-dn.net/?f=T_f%20%3D%20260%2A%5B%5Cfrac%7B151%7D%7B80.6%7D%5D%5E%20%7B%281.38-1%29%7D)
T_f = 330.0 K
Part 3
determine number of moles by using following formula


