Energy required to raise the temperature from 35°C - 45 °C= 25116 J.
specific heat, the quantity of warmth required to raise the temperature of one gram of a substance by means of one Celsius degree. The units of precise warmth are generally energy or joules consistent with gram according to Celsius diploma. for instance, the unique warmth of water is 1 calorie (or 4.186 joules) according to gram in step with Celsius degree.
solving,
Sample of liquid = 400. 0 g
temperature = 30. 0 ºc
joules of energy are required to raise the temperature of the water to 45. 0 ºc
therefore rise in temperature 45 - 30 = 15°C
Specific heat capacity = 4.186 J/g m °C
In kelvin = 273 + 15 = 288
= ∴ energy required = Q = m s ( t final - t initial)
= 400*4.186 * 15
= 25116 joule
Learn more about specific heat here:-brainly.com/question/21406849
#SPJ4
Answer:
Explanation:
<u>1) Equilibrium equation (given):</u>
- 2CH₂Cl₂ (g) ⇄ CH₄ (g) + CCl₄ (g)
<u>2) Write the concentration changes when some concentration, A, of CH₂Cl₂ (g) sample is introduced into an evacuated (empty) vessel:</u>
- 2CH₂Cl₂ (g) ⇄ CH₄ (g) + CCl₄ (g)
A - x x x
<u>3) Replace x with the known (found) equilibrium concentraion of CCl₄ (g) of 0.348 M</u>
- 2CH₂Cl₂ (g) ⇄ CH₄ (g) + CCl₄ (g)
A - 0.3485 0.348 0.348
<u>4) Write the equilibrium constant equation, replace the known values and solve for the unknown (A):</u>
- Kc = [ CH₄ (g) ] [ CCl₄ (g) ] / [ CH₂Cl₂ (g) ]²
- A² = 56.0 / 0.348² = 462.
The answer is transition metals because they have no specific charge except for 1 or 2 of them
Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ