Answer:
C: Sodium chloride
Explanation:
Common salt is gotten when sodium atoms reacts with chlorine atoms in an exothermic reaction to form an ionic substance known as sodium chloride with the chemical formula NaCl.
Equation is;
2Na + Cl2 = 2NaCl
Looking at the options, the correct one is Sodium chloride.
Answer:
Hypsochromic shift.
The second solvent is more polar.
Explanation:
Compound A + Solvent 1 = red
Compound A + Solvent 2 = orange
Since orange has a smaller wavelength than red, the electronic transition observed when the compound A is dissolved in solvent 2 has a higher energy.
A band transition to a lower wavelength and higher energy is called a hypsochromic shift.
The change in the color due to the solvent is called solvatochromism. Usually, when the hypsochromic shift is observed (negative solvatochromism) it means that the solvent is more polar.
Answer: B. The anion affects the color of the solution more than the intensity of the color.
Explanation:
An ionic bond is gotten when an electron is transferred from a metal atom to a non-metal one. It should be noted that the ionic bonds simply has an anion and a cation.
An anion is formed when a valence election is gained by a non metal while a cation is formed when the metal ion misplaces a valence electron.
The effect of the anion of an ionic compound on the appearance of the solution is that the anion affects the color of the solution more than the intensity of the color.
Answer:
Higher the frequency, the higher the energy
Explanation:
Please help me by marking me brainliest. I'm really close :)
The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Given data :
mass of aspirin = 640 mg = 0.640 g
volume of water = 10 ounces = 0.295735 L
molar mass of aspirin = 180.16 g/mol
moles of aspirin = mass / molar mass = 0.00355 mol
<h3>Determine the pH of the solution </h3>
First step : <u>calculate the concentration of aspirin</u>
= moles of Aspirin / volume of water
= 0.00355 / 0.295735
= 0.012 M
Given that pKa of Aspirin = 3.5
pKa = -logKa
therefore ; Ka =
= 
From the Ice table
=
=
given that the value of Ka is small we will ignore -x
x² =
x =
Therefore
[ H⁺ ] =
given that
pH = - Log [ H⁺ ]
= - ( -3 + log 1.948 )
= 2.71 ≈ 2.7
Hence we can conclude that The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Learn more about Aspirin : brainly.com/question/2070753