A force of attraction that
holds atom together
When atoms react they form a
chemical bond which is defined as a force of attraction that holds atom
together. A force of attraction is defined as a kind of force that draws two or
more objects together regardless of distance. There are two major categories of
forces of attraction, one is intramolecular and intermolecular. Intramolecular forces
is the presence of forces in atoms internally. While intermolecular is the
force by which the force that is existent in two or more elements.
Answer:
Ksp = 1.07x10⁻²¹
Explanation:
Molar solubility is defined as moles of solute can be dissolved in 1L.
Ksp for NiS is defined as:
NiS(s) ⇄ Ni²⁺(aq) + S²⁻(aq)
Ksp = [Ni²⁺] [S²⁻]
As molar solubility is 3.27x10⁻¹¹M, concentration of [Ni²⁺] and [S²⁻] is 3.27x10⁻¹¹M for both.
Replacing:
Ksp = [3.27x10⁻¹¹M] [3.27x10⁻¹¹M]
<em>Ksp = 1.07x10⁻²¹</em>
<em></em>
Answer:
The expression of an equilibrium constant will given as:
![K_c=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium

The expression of an equilibrium constant will given as:
![K_c=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)