Answer:
0.897 J/g°C
Explanation:
Step 1:
Data obtained from the question. This includes the following:
Mass (M) of substance = 155g
Initial temperature (T1) = 25.0°C
Final temperature (T2) = 40°C
Change is temperature (ΔT) = T2 – T1 = 40°C – 25.0°C = 15°C
Heat Absorbed (Q) = 2085 J
Specific heat capacity (C) of the substance =?
Step 2:
Determination of the specify heat capacity of the substance.
Applying the equation: Q = MCΔT, the specific heat capacity of the substance can be obtained as follow:
Q = MCΔT
C = Q/MΔT
C = 2085 / (155 x 15)
C = 0.897 J/g°C
Therefore, the specific heat capacity of the substance is 0.897 J/g°C
<span> 52.0ml of 0.35M CH3COOH : 0.052 L(0.35M) = .0182 mol of CH3COOH.
</span>
<span>31.0ml of 0.40M NaOH : .031 L(0.40M) = .0124 mol of NaOH.
</span>
<span>After the reaction, .0124 Mol CH3COO- is generated and .058 mol CH3COOH is left un-reacted. The concentration would be 12.4/V and 5.8/V, respectively. Therefore:
</span>
<span>pH = -log([H+]) = -log(Ka*[CH3COOH]/[CH3COO-]) </span>
<span>= -log(1.8x10^-5*5.8/12.4) = 5.07</span>
Answer:
hahah animals in the world
H2O, also known as water, stands for two hydrogen atoms and one oxygen atom. Hope this helps! ^^
Answer:
there must be free-moving electrons in a compound to conduct electricity.
in solid ionic compounds, there are no free electrons so it can't conduct electricity.
But in aqueous form the forces of attraction are broken and the ions (cations and anions) are free to move. This means there are free electrons that allow the aqueous compound to conduct electricity.