Answer:
1. In triangle ABC,
AC = a = 10, BC =b= 7 and ∠ C = 90°
By cosine law,
![AB^2 = 7^2 + 10^2 - 2\times 7\times 10 cos 90^{\circ}](https://tex.z-dn.net/?f=AB%5E2%20%3D%207%5E2%20%2B%2010%5E2%20-%202%5Ctimes%207%5Ctimes%2010%20cos%2090%5E%7B%5Ccirc%7D)
![AB^2 = 49 + 100 - 0](https://tex.z-dn.net/?f=AB%5E2%20%3D%2049%20%2B%20100%20-%200)
![AB^2 = 149](https://tex.z-dn.net/?f=AB%5E2%20%3D%20149)
![AB= \sqrt{149}](https://tex.z-dn.net/?f=AB%3D%20%5Csqrt%7B149%7D)
Now, by the law of sine,
![\frac{sin B}{10} = \frac{sin90^{\circ}}{\sqrt{149} }](https://tex.z-dn.net/?f=%5Cfrac%7Bsin%20B%7D%7B10%7D%20%3D%20%5Cfrac%7Bsin90%5E%7B%5Ccirc%7D%7D%7B%5Csqrt%7B149%7D%20%7D)
![sin B = \frac{10}{\sqrt{149} }](https://tex.z-dn.net/?f=sin%20B%20%3D%20%5Cfrac%7B10%7D%7B%5Csqrt%7B149%7D%20%7D)
![\angle B = 55.0079798014\approx 55.008^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20B%20%3D%2055.0079798014%5Capprox%2055.008%5E%7B%5Ccirc%7D)
2. In triangle ABC,
∠B = 30°, AB=c=10 and ∠C = 90°
∠A = 180°-(30+90)°=60°
![\frac{AC}{10}=sin30^{\circ}](https://tex.z-dn.net/?f=%5Cfrac%7BAC%7D%7B10%7D%3Dsin30%5E%7B%5Ccirc%7D)
⇒ ![AC = \frac{10}{2} = 5](https://tex.z-dn.net/?f=AC%20%3D%20%5Cfrac%7B10%7D%7B2%7D%20%3D%205)
By Pythagoras,
![CB^2 = AB^2 - AC^2=10^2 - 5^2 = 100 - 25 = 75](https://tex.z-dn.net/?f=CB%5E2%20%3D%20AB%5E2%20-%20AC%5E2%3D10%5E2%20-%205%5E2%20%3D%20100%20-%2025%20%3D%2075)
⇒ ![CB = \sqrt{75} =8.66025403784\approx 8.66](https://tex.z-dn.net/?f=CB%20%3D%20%5Csqrt%7B75%7D%20%3D8.66025403784%5Capprox%208.66)
The amount of money in the account after t years is given by the function
![f(t)=1000\cdot(1.12)^t](https://tex.z-dn.net/?f=f%28t%29%3D1000%5Ccdot%281.12%29%5Et)
We want to evaluate how much money would be in your account after the third year, to do it we must put t = 3 in our function, then
![\begin{gathered} f(t)=1000\cdot(1.12)^t \\ \\ f(3)=1000\cdot(1.12)^3 \\ \\ f(3)=1000\cdot1.404928 \\ \\ f(3)=1404.928 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20f%28t%29%3D1000%5Ccdot%281.12%29%5Et%20%5C%5C%20%20%5C%5C%20f%283%29%3D1000%5Ccdot%281.12%29%5E3%20%5C%5C%20%20%5C%5C%20f%283%29%3D1000%5Ccdot1.404928%20%5C%5C%20%20%5C%5C%20f%283%29%3D1404.928%20%5Cend%7Bgathered%7D)
And we can approximate to
Answer:
? = 14
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp /adj
tan ? = 8/33
Taking the inverse tan of each side
tan ^-1 ( tan ?) = tan ^-1 ( 8/33)
? =13.62699
To the nearest degree
? = 14
Answer:
x = 8
y = -7
Step-by-step explanation:
This is a system of equations called simultaneous equations. We shall solve it by elimination method Step 1We shall label the equations (1) and (2)−3y−4x=−11.....(1)3y−5x=−61......(2)Step 2Multiply each term in equation (1) by 1 to give equation (3)1(-3y-4x=-11).....(1)-3y-4x=-11....(3)Step 3Multiply each term in equation 2 by -1 to give equation (4)-1(3y−5x=−61)......(2)-3y+5x=61.....(4)Step 4-3y-4x=-11....(3)-3y+5x=61.....(4)Subtract each term in equation (3) from each term in equation (4)-3y-(-3y)+5x-(-4x)=61-(-11)-3y+3y+5x+4x=61+110+9x=729x=72Step 5Divide both sides of the equation by 9, the coefficient of the unknown variable x to find the value of x 9x/9 = 72/9x = 8Step 6Put in x = 8 into equation (2)3y−5x=−61......(2)3y-5(8)=-613y-40=-61Collect like terms by adding 40 to both sides of the equation 3y-40+40=-61+403y=-21Divide both sides by 3, the coefficient of y to find the value of y 3y/3=-21/3y=-7Therefore, the values of x and y that satisfy the equations are 8 and -7 respectively