The Lewis structure/diagram for CH2O (aka Formaldehyde) can be written in either of the following ways shown in the picture.
The dots represent electrons in the valence shell of the atom (the outermost shell). The green dots are electrons that belong to the Oxygen atom, the blue belong to the Carbon atom, and the pink belong to the Hydrogen atoms.
Covalent bonds are bonds between atoms where atoms share electrons with each other. Atoms bond because they obey the octet rule ( the rule states that most atoms of main-group elements tend to want 8 electrons in their valence shells).
Oxygen has 6 valence electrons, Carbon has 4, and Hydrogen has 1. H does not follow the octet rule, but C and O do, so the atoms are arranged in this way so that the O and C atoms have a full octet of electrons in their valence.
Convert the child weight (37.3 pounds) to kilograms
37.3 lb x 0.453 kg /1lb = "A kg"
multiply the dose (9.00mg/kg) by the weight of the child to find how much you need to give him
A kg * 9.00 mg/1kg = "B mg"
calculate the mL of suspension dividing the "B mg" by the concentration of the suspension 60.0 mg/mL
B mg * 1mL/ 60.0 mg = C mL <span>oxcarbazepine</span>
I think the answer is true.
<span>Divide the number of grams present in the sample by copper's gram atomic weight to find the number of gram atomic weights present. Then multiply that result by Avogadro's Number: 6.022137 x 10^23 atoms/gram atomic weight.1,200 g/(63.54 g/gram atomic weight) ? 18.885741 gram-atomic weights. Hope this helps. </span>