The properties of the given elements are as follows:
Potassium, K;
- State of matter: Solid
- Melting point: 63.5 °C
- Conductivity: Good
- Solubility (H2O): reacts rapidly with water
Iodine, I;
- State of matter: solid
- Melting point: 113.5 °C
- Conductivity: very poor
- Solubility (H2O): negligible
Gold, Au;
- State of matter: solid
- Melting point: 1064 °C
- Conductivity: excellent
- Solubility (H2O): none
Germanium, Ge;
- State of matter: solid
- Melting point: 938.2 °C
- Conductivity: fair
- Solubility (H2O): none
Barium, Ba;
- State of matter: solid
- Melting point: 727 °C
- Conductivity: good
- Solubility (H2O): reacts strongly
Argon, Ar;
- State of matter: gas
- Melting point: -189.4 °C
- Conductivity: none
- Solubility (H2O): negligible
Chlorine Cl;
- State of matter: gas
- Melting point: -101.5 °C
- Conductivity: poor
- Solubility (H2O): slight
Rubidium, Rb;
- State of matter: solid
- Melting point: 39.48 °C
- Conductivity: good
- Solubility (H2O): reacts violently
Silver, Ag;
- State of matter: solid
- Melting point: 961.8 °C
- Conductivity: excellent
- Solubility (H2O): none
Calcium, Ca;
- State of matter: solid
- Melting point: 842 °C
- Conductivity: good
- Solubility (H2O): reacts
Silicon, Si;
- State of matter: solid
- Melting point: 1,410 °C
- Conductivity: intermediate
- Solubility (H2O): none
Xenon, Xe;
- State of matter: gas
- Melting point: -111.8 °C
- Conductivity: very poor
- Solubility (H2O): none
<h3>What are elements?</h3>
Elements are pure substances which are composed of similar atoms.
Elements are defined as substances which cannot be split into simpler substances by an ordinary chemical process.
Elements have different physical and chemical properties and can be classified into:
- metals
- semi-metals
- non-metals
In conclusion, the physical and chemical properties of the elements vary from metals to non-metals.
Learn more about elements at: brainly.com/question/6258301
#SPJ1
Answer:
a frisbee flaying in the air
Explanation:
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where;
- K.E represents kinetic energy measured in Joules.
- M represents mass measured in kilograms.
- V represents velocity measured in metres per seconds square.
Hence, an example of kinetic energy at work is a frisbee flaying in the air because it would possess energy due to its motion in the air.
If a gas has an initial pressure of 24,650 pa and an initial volume of 376 ml, then the final volume would be 11,943.8144 ml if the pressure of the gas is changed to 775 torr assuming that the amount and the temperature of the gas remain constant.
It is given that the initial pressure P₁ is 24,650Pa and initial volumeV₁ is 376ml and the final pressureP₂ is 775 torr. We need to find the final volume of the gas. The final volume could be found using the following formula:
P₁V₁ = P₂V₂
By substituting the values, we get
24650 x 376 = 776 x V₂
9268400 = 776V₂
V₂ = 9268400/776
V₂ = 11,943.8144 ml
Therefore, the final volume of the gas would be 11,943.8144 ml
To know more about Partial pressure, click below:
brainly.com/question/14119417
#SPJ4
Work is measured in joules. hope this helps!