Find the length of the radius.
![r= \sqrt{(3-(-4))^2+(5-6)^2} \\r = \sqrt{7^2+(-1)^2} \\r= \sqrt{50} \\ r=5 \sqrt{2}](https://tex.z-dn.net/?f=r%3D%20%5Csqrt%7B%283-%28-4%29%29%5E2%2B%285-6%29%5E2%7D%0A%5C%5Cr%20%3D%20%20%5Csqrt%7B7%5E2%2B%28-1%29%5E2%7D%0A%5C%5Cr%3D%20%5Csqrt%7B50%7D%20%0A%5C%5C%20%20r%3D5%20%5Csqrt%7B2%7D%20)
Find the length of the diameter.
d = 2r = 2 × 5√2 = 10√2
Point B must lie on a line AC, where C is a center of a circle.
Find equation of line AC.
A(–4, 6), C(3, 5)
The distance from B(x, y) to C(3, 5) is 5√2.
![\sqrt{(x-3)^2+(y-5)^2}=5 \sqrt{2} \\(x-3)^2+(y-5)^2=(5 \sqrt{2})^2 \\(x-3)^2+(y-5)^2=50](https://tex.z-dn.net/?f=%20%5Csqrt%7B%28x-3%29%5E2%2B%28y-5%29%5E2%7D%3D5%20%5Csqrt%7B2%7D%20%0A%20%5C%5C%28x-3%29%5E2%2B%28y-5%29%5E2%3D%285%20%5Csqrt%7B2%7D%29%5E2%20%0A%5C%5C%28x-3%29%5E2%2B%28y-5%29%5E2%3D50)
Solve system of equations.
![x+7y-38=0 \\(x-3)^2+(y-5)^2=50 \\ \\x=38-7y \\(38-7y-3)^2+(y-5)^2=50 \\(35-7y)^2+(y-5)^2=50 \\1225-490y+49y^2+y^2-10y+25-50=0 \\50y^2-500y+1200=0 \\y^2-10y+24=0 \\y^2-6y-4y+24=0 \\y(y-6)-4(y-6)=0 \\(y-6)(y-4)=0 \\y_1=6,y_2=4 ](https://tex.z-dn.net/?f=x%2B7y-38%3D0%0A%5C%5C%28x-3%29%5E2%2B%28y-5%29%5E2%3D50%0A%5C%5C%0A%5C%5Cx%3D38-7y%0A%5C%5C%2838-7y-3%29%5E2%2B%28y-5%29%5E2%3D50%0A%5C%5C%2835-7y%29%5E2%2B%28y-5%29%5E2%3D50%0A%5C%5C1225-490y%2B49y%5E2%2By%5E2-10y%2B25-50%3D0%0A%5C%5C50y%5E2-500y%2B1200%3D0%0A%5C%5Cy%5E2-10y%2B24%3D0%0A%5C%5Cy%5E2-6y-4y%2B24%3D0%0A%5C%5Cy%28y-6%29-4%28y-6%29%3D0%20%5C%5C%28y-6%29%28y-4%29%3D0%20%5C%5Cy_1%3D6%2Cy_2%3D4%0A)
![x_1=38-7y_1=38-7 \times 6 = 38-42=-4 \\x_2=38-7y_2=38-7 \times 4 = 38-28=10 ](https://tex.z-dn.net/?f=x_1%3D38-7y_1%3D38-7%20%5Ctimes%206%20%3D%2038-42%3D-4%0A%5C%5Cx_2%3D38-7y_2%3D38-7%20%5Ctimes%204%20%3D%2038-28%3D10%0A)
Point B could have coordinates
![\\ \\(x_1,y_1)=(-4,6),(x_2,y_2)=(10,4) ](https://tex.z-dn.net/?f=%5C%5C%0A%5C%5C%28x_1%2Cy_1%29%3D%28-4%2C6%29%2C%28x_2%2Cy_2%29%3D%2810%2C4%29%0A)
But (–4, 6) are the coordinates of point A.
Therefore, point B has coordinates (10,4).