The Energy is Kinetic Energy.
Kinetic Energy = 1/2*mv², Where m is mass in kg, v is velocity in m/s
Energy is 33750 Juoles, v = 30m/s
1/2*mv² = E
1/2*m*30² = 33750
m = (2*33750) / (30²) Using a calculator
m = 75 kg
Mass of object is 75 kg.
Answer:
11250 N
Explanation:
From the question given above, the following data were obtained:
Normal force (R) = 15000 N
Coefficient of static friction (μ) = 0.75
Frictional force (F) =?
Friction and normal force are related by the following equation:
F = μR
Where:
F is the frictional force.
μ is the coefficient of static friction.
R is the normal force.
With the above formula, we can calculate the frictional force acting on the car as follow:
Normal force (R) = 15000 N
Coefficient of static friction (μ) = 0.75
Frictional force (F) =?
F = μR
F = 0.75 × 15000
F = 11250 N
Therefore, the frictional force acting on the car is 11250 N
For free fall motion the displacement can be found by graphically as well as by kinematics equation
Here acceleration of object is constant as it fall due to gravity so we can use

here if body starts with zero initial speed then we can say

here we need to find the displacement from t = 0 to t = 6s
so we can say


so the displacement will be 176.4 m
in order to find the displacement from the graph of velocity and time we need to find the area under the graph for given time interval that will also give us same displacement for given period of time.
Answer: 1.776933x10^7
Explanation:
Moment of inertia I = 8.26x10^36kgm^2
Mass of planet m = 6.54x10^22kg
Also, Planet is solid sphere so that, Moment of inertia is I = _2_ m
R^2= 0.4 R^2 5
Where R is radius of planet
Putting into calculation
We get,
I = _2_ m R^2
5
8.26x10^36 = 0.4x6.54x10^22xR^2
8.26x10^14 = 2.616 R^2
R = 1.776933x10^7