In a transformer, energy is carried from the primary coil to the secondary coil by magnetic field in the iron core.
To find the answer, we have to know more about the transformer.
<h3>
How transformer works?</h3>
- An item utilized in the transfer of electric energy is a transformer.
- AC current is used for transmission.
- It is frequently used to modify the supply voltage between circuits without altering the AC frequency.
- The fundamentals of mutual and electromagnetic induction govern how the transformer operates.
- Magnetic field through the primary coil changes when primary coil current varies. the iron core of the secondary coil likewise has a magnetic field.
- EMF is therefore generated in the secondary coil.
Thus, we can conclude that, in a transformer, energy is carried from the primary coil to the secondary coil by magnetic field in the iron core.
Learn more about the transformer here:
brainly.com/question/26787198
#SPJ4
Answer:
Bath CD jshchdhdhfhfhhfhd jpg de f for frr for gi Jhong GO by be jr jpg be
Answer:
theres only 118 elements that are discovered. now that they're the only ones out there
Explanation:
Answer:
The distance between the two spheres is 914.41 X 10³ m
Explanation:
Given;
4 X 10¹³ electrons, and its equivalent in coulomb's is calculated as follows;
1 e = 1.602 X 10⁻¹⁹ C
4 X 10¹³ e = 4 X 10¹³ X 1.602 X 10⁻¹⁹ C = 6.408 X 10⁻⁶ C
V = Ed
where;
V is the electrical potential energy between two spheres, J
E is the electric field potential between the two spheres N/C
d is the distance between two charged bodies, m

where;
K is coulomb's constant = 8.99 X 10⁹ Nm²/C²
d = (8.99 X 10⁹ X 6.408 X 10⁻⁶)/0.063
d = 914.41 X 10³ m
Therefore, the distance between the two spheres is 914.41 X 10³ m