1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
antoniya [11.8K]
3 years ago
10

What is the mass of an object that creates 33,750 joules of energy by traveling at 30 m/sec?

Physics
2 answers:
maksim [4K]3 years ago
8 0

Answer:

M=75

Explanation:

33750=1/2x M x30²

30x30=900

1/2x900=450

33750/450=75

nikklg [1K]3 years ago
5 0
The Energy is Kinetic Energy.

Kinetic Energy = 1/2*mv²,  Where m is mass in kg, v is velocity in m/s

Energy is 33750 Juoles,  v = 30m/s

1/2*mv² = E

1/2*m*30² = 33750

m = (2*33750) / (30²)     Using a calculator

m = 75 kg

Mass of object is 75 kg.
You might be interested in
A plumber heats a plastic pipe, softens it, shapes it, and then lets it cool. After it is hardened, the
aev [14]

Answer:

thermoset

Explanation:

A thermoset material is a polymer that is irreversibly hardened by curing. Curing is induced by heat and cannot be undone because the polymers cross link during the process, creating permanent chemical bonds.

3 0
2 years ago
Is the term used to describe the removal of sand and soil by the wind.
Hitman42 [59]

Answer:

erosion

Explanation:

5 0
3 years ago
A BMX bicycle rider takes off from a ramp at a point 2.4 m above the ground. The ramp is angled at 40 degrees from the horizonta
adoni [48]

Answer:

The BMX lands 5.4 m from the end of the ramp.

Explanation:

Hi there!

The position of the BMX is given by the position vector "r":

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

Where:

r = position vector at time t

x0 = initial horizontal position

v0 = initial velocity

α = jumping angle

y0 = initial vertical position

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive)

Please, see the attached graphic for a better understanding of the situation. At final time, when the bicycle reaches the ground, the vector position will be "r final" (see figure). The y-component of the vector "r final" is - 2.4 m (placing the origin of the frame of reference at the jumping point). With that information, we can use the equation of the y-component of the vector "r" (see above) to calculate the time of flight. With that time, we can then obtain the x-component (rx in the figure) of the vector "r final". Then:

y = y0 + v0 · t · sin α + 1/2 · g · t²

-2.4 m = 0 m + 5.9 m/s · t · sin 40° - 1/2 · 9.8 m/s² · t²

0 = -4.9 m/s² · t² + 5.9 m/s · t · sin 40° + 2.4 m

Solving the quadratic equation:

t = 1.2 s

Now, we can calculate the x-component of the vector "r final" that is the horizontal distance traveled by the bicycle:

x = x0 + v0 · t · cos α

x = 0 m + 5.9 m/s · 1.2 s · cos 40°

x = 5.4 m

The BMX lands 5.4 m from the end of the ramp.

Have a nice day!

8 0
2 years ago
31. Draw a free body diagram for a 15.5N box that is being pushed to the right with a 18. N force while experiencing 4.30 N of r
posledela

Answer:

See answers below

Explanation:

a.

F = mg,

15.5 N = m(9.8 m/s²)

m = 1.58 kg

b.

Fnet = Applied force - resistance,

Fnet = 18 N - 4.30 N,

Fnet = 13.70 N

Fnet = ma

13.70 N = (1.58 kg)a

a = 8.67 m/s²

For the free body diagram, draw a box with an upward arrow labeled 15.5 N, a downward label labeled 15.5 N, a right label labeled 18 N, and a left label labeled 4.30 N.

7 0
2 years ago
Object A has 27 J of kinetic energy. Object B has one-quarter the mass of object A.
andreev551 [17]

Answer:

the final speed of object A changed by a factor of  \frac{1}{\sqrt{3} } = 0.58

the final speed of object B changed by a factor of \sqrt{\frac{5}{3} } = 1.29

Explanation:

Given;

kinetic energy of object A, = 27 J

let the mass of object A = m_A

then, the mass of object B = m_B = \frac{m_A}{4}

work done on object A = -18 J

work done on object B = -18 J

let v_i be the initial speed

let v_f be the final speed

For object A;

K.E_A = 27\\\\\frac{1}{2} m_A v_i^2 = 27\\\\m_A v_i^2  = 54\\\\m_A = \frac{54}{v_i^2} ----Equation \ (1)\\\\Apply \ work-energy \ theorem;\\\\\delta K.E_A = -18\\\\\frac{1}{2} m_A v_f^2 - \frac{1}{2} m_A v_i^2 = -18\\\\\frac{1}{2} m_A ( v_f^2 \ -  v_i^2 )\ =- 18\\\\v_f^2 \ -  v_i^2  = -\frac{36}{m_A} ---Equation \ (2)\\\\v_f^2 \ -  v_i^2  = -\frac{36v_i^2}{54}\\\\ v_f^2 \ =v_i^2 - \frac{36v_i^2}{54}\\\\ v_f^2 = \frac{54v_i^2 -36v_i^2 }{54} \\\\v_f^2 = \frac{18v_i^2}{54} \\\\v_f^2 = \frac{v_i^2}{3} \\\\

v_f = \sqrt{\frac{v_i^2}{3} }\\\\v_f = \frac{1}{\sqrt{3} } \ v_i\\\\

Thus, the final speed of object A changed by a factor of  \frac{1}{\sqrt{3} } = 0.58

To obtain the change in the final speed of object B, apply the following equations.

K.E_B_i = \frac{1}{2} m_Bv_i^2\\\\m_B = \frac{m_A}{4} \\\\K.E_B_i = \frac{1}{2}(\frac{m_A}{4} )v_i^2\\\\K.E_B_i = \frac{m_Av_i^2}{8} \\\\But, \ m_Av_i^2 = 54 \\\\K.E_B_i = \frac{54}{8} \\\\Apply \ work-energy \ theorem ;\\\\\delta K.E = -18\\\\K.E_f -K.E_i = -18\\\\\frac{1}{2}m_Bv_f^2 - \frac{1}{2} m_Bv_i^2 = -18\\\\Recall \ m_B =  \frac{m_A}{4} \\\\\frac{1}{2}(\frac{m_A}{4} )v_f^2 - \frac{1}{2}(\frac{m_A}{4} )v_i^2 = -18\\\\\frac{1}{2}\times \frac{m_A}{4} (v_i^2 -v_f^2) = 18\\\\

\frac{1}{2}\times \frac{m_A}{4} (v_i^2 -v_f^2) = 18\\\\v_i^2 -v_f^2 = \frac{8}{m_A} \times 18\\\\v_i^2 -v_f^2 =\frac{144}{m_A} \\\\But , m_A = \frac{54}{v_i^2} \\\\v_i^2 -v_f^2 =\frac{144v_i^2}{54} \\\\v_f^2 = v_i^2 - \frac{144v_i^2}{54}\\\\v_f^2 = \frac{54v_i^2-144v_i^2}{54}\\\\ v_f^2 = \frac{-90v_i^2}{54} \\\\v_f^2 = \frac{-5v_i^2}{3} \\\\|v_f| = \sqrt{\frac{5v_i^2}{3}} \\\\|v_f| = \sqrt{\frac{5}{3}} \ v_i

Thus, the final speed of object B changed by a factor of \sqrt{\frac{5}{3} } = 1.29

3 0
2 years ago
Other questions:
  • If red and yellow paint are mixed together, which color of light will be reflected?
    9·2 answers
  • Through which does light travel best?
    15·2 answers
  • How do elements first form ?
    9·1 answer
  • A converging lens has a focal length of 19.0 cm. Locate the images for the following object distances. A) 41 cm B) 14cm
    14·1 answer
  • The amount of oxygen in the reactants is 4 atoms. In the products, the oxygen is distributed to water (H2O) and O2
    11·2 answers
  • What is a black hole's escape velocity?
    6·1 answer
  • Car 1 drives 20 mph to the south, and car 2 drives 30 mph to the north. From
    10·1 answer
  • with what force will the a car hit a tree if the car has a mass of 3,000 kg and a acceleration of 2m/s^2​
    5·1 answer
  • According to Newton's second law of motion, if we have a rigid, unchanging mass and we observe it accelerating, what must be hap
    13·1 answer
  • Solving Problems: Using Ohm's law
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!