<span>Vector Equation
(Line)</span>(x,y) = (x,y) + t(a,b);tERParametric Formx = x + t(a), y = y + t(b); tERr = (-4,-2) + t((-3,5);tERFind the vector equation of the line passing through A(-4,-2) & parallel to m = (-3,5)<span>Point: (2,5)
Create a direction vector: AB = (-1 - 2, 4 - 5)
= (-3,-1) or (3,1)when -1 (or any scalar multiple) is divided out.
r = (2,5) + t(-3,-1);tER</span>Find the vector equation of the line passing through A(2,5) & B(-1,4)<span>x = 4 - 3t
y = -2 + 5t
;tER</span>Write the parametric equations of the line passing through the line passing through the point A(4,-2) & with a direction vector of m =(-3,5)<span>Create Vector Equation first:
AB = (2,8)
Point: (4,-3)
r = (4,-3) + (2,8); tER
x = 4 + 2t
y = -3 + 8t
;tER</span>Write the parametric equations of the line through A(4,-3) & B(6,5)<span>Make parametric equations:
x = 5 + 4t
y = -2 + 3t ; tER
For x sub in -3
-3 = 5 + 4t
(-8 - 5)/4 = t
-2 = t
For y sub in -8
-8 = -2 + 3t
(-8 + 2)/3 = t
-2 = t
Parameter 't' is consistent so pt(-3,-8) is on the line.</span>Given the equation r = (5,-2) + t(4,3);tER, is (-3,-8) on the line?<span>Make parametric equations:
x = 5 + 4t
y = -2 + 3t ; tER
For x sub in 1
-1 = 5 + 4t
(-1 - 5)/4 = t
-1 = t
For y sub in -7
-7 = -2 + 3t
(-7 + 2)/3 = t
-5/3 = t
Parameter 't' is inconsistent so pt(1,-7) is not on the line.</span>Given the equation r = (5,-2) + t(4,3);tER, is (1,-7) on the line?<span>Use parametric equations when generating points:
x = 5 + 4t
y = -2 + 3t ;tER
X-int:
sub in y = 0
0 = -2 + 3t
solve for t
2/3 = t (this is the parameter that will generate the x-int)
Sub t = 2/3 into x = 5 + 4t
x = 5 + 4(2/3)
x = 5 + (8/3)
x = 15/3 + (8/3)
x = 23/3
The x-int is (23/3, 0)</span>What is the x-int of the line r = (5,-2) + t(4,3); tER?Note: if they define the same line: 1) Are their direction vectors scalar multiples? 2) Check the point of one equation in the other equation (LS = RS if point is subbed in)What are the two requirements for 2 lines to define the same line?
Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others. From this definition,
For sample 1, Every fifth person who enters Little Casesars Arena for a Red Wings game. This is not biased because no person is more likely to be selected than another
For sample 2, Every tenth name in the phone. This is also not biased
because no person is more likely to be selected than another
Step-by-step explanation:
the rhombus is both rectangle and square