Answer:
the answer is The pneumatic mechanical device can only be used as a de-icing device.
Explanation:
An ice protection system prevents the formation of ice, or enables the aircraft to shed the ice before it can grow to a dangerous thickness. Ice protection systems are designed to keep atmospheric ice from accumulating on aircraft surfaces such as wings, propellers and engine intakes.
The pneumatic mechanical device is the Pneumatic deicing boots which was invented by the Goodrich Corporation in 1923. The pneumatic boot is usually made of layers of rubber, with one or more air chambers between the layers.
Any design which utilizes either a mechanical means of breaking the bond of ice to the surface, or which operates on a periodic cycle, is necessarily a de-ice system.
It is in the noble gas group which has a full valence electron shell found in group 18
We want to find how much momentum the dumbbell has at the moment it strikes the floor. Let's use this kinematics equation:
Vf² = Vi² + 2ad
Vf is the final velocity of the dumbbell, Vi is its initial velocity, a is its acceleration, and d is the height of its fall.
Given values:
Vi = 0m/s (dumbbell starts falling from rest)
a = 10m/s² (we'll treat downward motion as positive, this doesn't affect the result as long as we keep this in mind)
d = 80×10⁻²m
Plug in the values and solve for Vf:
Vf² = 2(10)(80×10⁻²)
Vf = ±4m/s
Reject the negative root.
Vf = 4m/s
The momentum of the dumbbell is given by:
p = mv
p is its momentum, m is its mass, and v is its velocity.
Given values:
m = 10kg
v = 4m/s (from previous calculation)
Plug in the values and solve for p:
p = 10(4)
p = 40kg×m/s
Answer:
Hindi ko po alam
Explanation:
Kaya sa iba ka nalang mag tanong kac Bobo ako jaan
Constant force - stays the same throughout
Variable force - changes throughout