1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivenika [448]
3 years ago
13

What minerals can Fluorite scratch?

Physics
1 answer:
timurjin [86]3 years ago
6 0
Fluorite has a hardness of 4 out of 10 and can scratch gypsum, talc and anything less than 4. Fluorite has a hardness of 4 out of 10 and can scratch gypsum, talc and anything less than 4.
You might be interested in
Two golf balls are hit from the same point on a flat field. Both are hit at an angle of 30∘ above the horizontal. Ball 2 has twi
dimaraw [331]
First let's find the time it takes for the first ball to land:
Acceleration is a=-g so vertical velocity is V=-gt + V1sin(30).
Position is thus
S=(-1/2)gt^2 +V1t sin(30).
Solving for t gives
t=2V1sin(30)/g
The second ball has the same position function except for the new velocity, which is given by
V2=2V1. Putting this in and solving for t2 gives
t2=4V1sin(30)/g.
It takes twice as long for the second ball to land on the ground.
The horizontal distance of ball 1 is S1 = V1t cos(30). Again we look at ball 2's distance by substituting V2=2V1 and get
S2 = 2V1t2 cos(30).
Note here I put in t2 since it will fly for that amount of time. But we already saw that
t2 = 2t1
So S2=4V1 cos(30)
That is the second ball goes 4 times further than the first one. This is because it is going twice as fast along both the horizontal and the vertical. It moves horizontally twice as fast for twice as long.
6 0
3 years ago
Read 2 more answers
Identify the false statement: Select one:
svet-max [94.6K]

Answer:

D) Synthesizers have always had a well-established presence in standard ensembles

Explanation:

As synthesizers are electronic music instruments that can create the sounds of many different musical instruments, they have been seen as a threat to many musicians since their invention.

8 0
4 years ago
Read 2 more answers
An electron moves at 0.130 c as shown in the figure (Figure 1). There are points: A, B, C, and D 2.10 μm from the electron.
Olegator [25]

Hi there!

We can use Biot-Savart's Law for a moving particle:
B= \frac{\mu_0 }{4\pi}\frac{q\vec{v}\times \vec{r}}{r^2 }

B = Magnetic field strength (T)
v = velocity of electron (0.130c = 3.9 × 10⁷ m/s)

q = charge of particle (1.6 × 10⁻¹⁹ C)

μ₀ = Permeability of free space (4π × 10⁻⁷ Tm/A)

r = distance from particle (2.10 μm)

There is a cross product between the velocity vector and the radius vector (not a quantity, but specifies a direction). We can write this as:

B= \frac{\mu_0 }{4\pi}\frac{q\vec{v} \vec{r}sin\theta}{r^2 }

Where 'θ' is the angle between the velocity and radius vectors.

a)
To find the angle between the velocity and radius vector, we find the complementary angle:

θ = 90° - 60° = 30°

Plugging 'θ' into the equation along with our other values:

B= \frac{\mu_0 }{4\pi}\frac{q\vec{v} \vec{r}sin\theta}{r^2 }\\\\B= \frac{(4\pi *10^{-7})}{4\pi}\frac{(1.6*10^{-19})(3.9*10^{7}) \vec{r}sin(30)}{(2.1*10^{-5})^2 }

B = \boxed{7.07 *10^{-10} T}

b)
Repeat the same process. The angle between the velocity and radius vector is 150°, and its sine value is the same as that of sin(30°). So, the particle's produced field will be the same as that of part A.

c)

In this instance, the radius vector and the velocity vector are perpendicular so

'θ' = 90°.

B= \frac{(4\pi *10^{-7})}{4\pi}\frac{(1.6*10^{-19})(3.9*10^{7}) \vec{r}sin(90)}{(2.1*10^{-5})^2 } = \boxed{1.415 * 10^{-9}T}

d)
This point is ALONG the velocity vector, so there is no magnetic field produced at this point.

Aka, the radius and velocity vectors are parallel, and since sin(0) = 0, there is no magnetic field at this point.

\boxed{B = 0 T}

3 0
2 years ago
atoms combine in different ways to make up all of the substances you encounter everyday true or false
amm1812
True hope this helps :)
4 0
3 years ago
With what speed must you approach a source of sound to observe a 25% change in frequency?
insens350 [35]
Sound source is at rest, you are moving with velocity v, f = frequency, c = speed of sound:

f = f0(1 + v/c)

115 = 100(1 + v/343)
115 = 100 + 100v/343
15 = 100v/343
v = 15*343/100
<span> v = 51,45 m/s </span>
5 0
3 years ago
Other questions:
  • The water level in a vertical glass tube 1.00 m long can be adjusted to any position in the tube. A tuning fork vibrating at 653
    15·1 answer
  • What are the five events that can trigger a mass movement
    8·1 answer
  • How can you use energy conversation to predict the speed of the marble from the height?
    11·1 answer
  • (10 pt)
    8·1 answer
  • Which avtivties belongs on top of physical activity pyramid
    15·2 answers
  • Why does a buoyant force act on every object in a fluid?
    10·1 answer
  • Can someone help me ?????
    10·2 answers
  • Why doesn't the arrow fly forever
    5·1 answer
  • A cat runs 80 meters to the left in 16 seconds, then 50 meters to the right in 10 seconds, then 70 meters to the left in 14 seco
    9·1 answer
  • How many earth years does it take mercury to go around the sun?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!