Ω₀ = the initial angular velocity (from rest)
t = 0.9 s, time for a revolution
θ = 2π rad, the angular distance traveled
Let
α = the angular acceleration
ω = the final angular velocity
The angular rotation obeys the equation
(1/2)*(α rad/s²)*(0.9 s)² = (2π rad)
α = 15.514 rad/s²
The final angular velocity is
ω = (15.514 rad/s²)*(0.9 s) = 13.963 rad/s
If the thrower's arm is r meters long, the tangential velocity of release will be
v = 13.963r m/s
Answer: 13.963 rad/s
Answer:
h₍₁₎ = 495,1 meters
h₍₂₎ = 480,4 m
h₍₃₎ = 455,9 m
...
..
Explanation:
The exercise is "free fall". t = 
Solving with this formula you find the time it takes for the stone to reach the ground (T) = 102,04 s
The heights (h) according to his time (t) are found according to the formula:
h(t) = 500 - 1/2 * g * t²
Remplacing "t" with the desired time.
Answer:
TIME he applied the fertilizer to each plant
Explanation:
Independent variable in an experiment is the variable that is subject to change or manipulation by the experimenter. In this experiment, Bob wanted to investigate the effects of plant fertilizer. Bob sets up the experiment by applying the fertilizer to each plant at DIFFERENT TIMES i.e. plant 1-every morning, plant 2-once a week, plant 3-never.
Based on this, it is obvious that the independent or manipulated variable is the TIME at which he applied the fertilizer. On the other hand, the dependent or measured variable is the height of the plants.
Answer:
I think it's the most important part in this