1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ycow [4]
3 years ago
6

Do alto de um farol cuja altura é de 20 m avista se um navio sob ângulo de depressão de 30°. A que distância , aproximadamente,

o navio se acha do farol ?

Mathematics
1 answer:
Mkey [24]3 years ago
7 0
Esta é a trigonometria . Se você desenhar uma linha a partir do topo da casa de luz para o barco, você terá a hypotonuse de um triângulo. Um truque é lembrar que este é um triângulo especial. É um triângulo 30-60-90 , que tem propriedades especiais mostradas na fixação abaixo . por isso sabemos que o lado adjacente que não é o hyposonuse é x√3 . Agora sabemos que x<span>√3 = 20
Solve for x.
x</span><span>√3=20
divide both sides by </span><span>√3.
x=20/(</span><span><span>√3)
</span>Try not to have square roots (</span><span><span>√)</span> in denomenator so multiply top and bottom by </span><span>√3 and get
x=(20</span><span>√3)/3
x is what we are looking for so the answer is </span>
20<span>√3 m </span><span>ou cerca de 34.64 m</span>










You might be interested in
A music store gives every 20th customer A $5 gift card. Every 50th customer gets A $10 gift card. Which customer will be the fir
slavikrds [6]
The 100th customer would be the first to receive both.
20×5=100
50×2=100
3 0
3 years ago
Read 2 more answers
Item 7
Mariulka [41]

Answer:

A = 74.7^\circ

B = 42.5^\circ

C = 62.8^\circ

Step-by-step explanation:

Given

A = (-1,2) \to (x_1,y_1)

B = (2,8) \to (x_2,y_2)

C = (4,1) \to (x_3,y_3)

Required

The measure of each angle

First, we calculate the length of the three sides of the triangle.

This is calculated using distance formula

d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2

For AB

A = (-1,2) \to (x_1,y_1)

B = (2,8) \to (x_2,y_2)

d = \sqrt{(-1 - 2)^2 + (2 - 8)^2

d = \sqrt{(-3)^2 + (-6)^2

d = \sqrt{45

So:

AB = \sqrt{45

For BC

B = (2,8) \to (x_2,y_2)

C = (4,1) \to (x_3,y_3)

BC = \sqrt{(2 - 4)^2 + (8 - 1)^2

BC = \sqrt{(-2)^2 + (7)^2

BC = \sqrt{53

For AC

A = (-1,2) \to (x_1,y_1)

C = (4,1) \to (x_3,y_3)

AC = \sqrt{(-1 - 4)^2 + (2 - 1)^2

AC = \sqrt{(-5)^2 + (1)^2

AC = \sqrt{26

So, we have:

AB = \sqrt{45

BC = \sqrt{53

AC = \sqrt{26

By representation

AB \to c

BC \to a

AC \to b

So, we have:

a = \sqrt{53

b = \sqrt{26

c = \sqrt{45

By cosine laws, the angles are calculated using:

a^2 = b^2 + c^2 -2bc \cos A

b^2 = a^2 + c^2 -2ac \cos B

c^2 = a^2 + b^2 -2ab\ cos C

a^2 = b^2 + c^2 -2bc \cos A

(\sqrt{53})^2 = (\sqrt{26})^2 +(\sqrt{45})^2 - 2 * (\sqrt{26}) +(\sqrt{45}) * \cos A

53 = 26 +45 - 2 * 34.21 * \cos A

53 = 26 +45 - 68.42 * \cos A

Collect like terms

53 - 26 -45 = - 68.42 * \cos A

-18 = - 68.42 * \cos A

Solve for \cos A

\cos A =\frac{-18}{-68.42}

\cos A =0.2631

Take arc cos of both sides

A =\cos^{-1}(0.2631)

A = 74.7^\circ

b^2 = a^2 + c^2 -2ac \cos B

(\sqrt{26})^2 = (\sqrt{53})^2 +(\sqrt{45})^2 - 2 * (\sqrt{53}) +(\sqrt{45}) * \cos B

26 = 53 +45 -97.67 * \cos B

Collect like terms

26 - 53 -45= -97.67 * \cos B

-72= -97.67 * \cos B

Solve for \cos B

\cos B = \frac{-72}{-97.67}

\cos B = 0.7372

Take arc cos of both sides

B = \cos^{-1}(0.7372)

B = 42.5^\circ

For the third angle, we use:

A + B + C = 180 --- angles in a triangle

Make C the subject

C = 180 - A -B

C = 180 - 74.7 -42.5

C = 62.8^\circ

8 0
2 years ago
What is the volume of a cone with a height of 9.5 inches and a radius of 8 inches? Cone V = 1 3 Bh 1. Rewrite the formula for th
Nesterboy [21]

Answer:

636.4 in³  

Step-by-step explanation:

Volume of a cone is given by:

V = \frac{1}{3}\pi r^2 h

where r is the radius of the base of the cone and h is its height.

It is given that, the radius of the base of the cone is, r = 8 in

The height of the cone is, h = 9.5

\Rightarrow V = \frac{1}{3} \times 3.14 \times (8)^2 (9.5) = 636.4 in^3

Thus, the volume of the cone is 636.4 in³  

6 0
3 years ago
Read 2 more answers
PLEASE HELP ASAP!! WILL MARK BAINLIEST
yawa3891 [41]

Answer:

12 > x+5 (?) 52

Step-by-step explanation:


4 0
3 years ago
Easy points. see image below
tatuchka [14]

Answer:

 6

Given expression:

  • \sf -(-(-3)) + 2 + |-7|

Simplify following inside parenthesis

  • \sf -3 + 2 + |-7|

If following is |-a| then |-a| = a

  • \sf -3 + 2 + 7

Evaluate following

  • \sf 6
4 0
2 years ago
Other questions:
  • Find the range of the function f(x) = -x 2 + 4x if the domain is {-2, 0, 1}.
    12·1 answer
  • describe a system of equations in which subtraction would be the most efficient way of solving the system.
    13·1 answer
  • A can company charges $3.50 fee to call a cab and then charges $5 for every mile driven
    15·1 answer
  • Last week, meg bought 1 3/4 pounds of fruit at the market. this week, she buys 4 times as many pounds of fruit as last week. in
    6·1 answer
  • Help me please as soon as possible
    15·2 answers
  • I WILL GIVE YOU BRAINLY PLSS
    7·2 answers
  • Bloussanoma Evaluate the expression when a = 7 and b=9. <br>a+5b=??<br>​
    8·1 answer
  • David told Luis that he was going to make a triangle
    8·1 answer
  • Work out the value of x
    9·1 answer
  • Y+5=2(x+1) find x and y intercepts
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!