The heat transfer rate through the turbine is
.
<u>Explanation:</u>
Express the final form of the overall energy equation.

Here, the rate of heat addition to the control volume is
, shaft work rate is
, rate of accumulation of energy inside control volume is
, rate of work accomplished in viscous effects at the surface is
, and the net energy efflux from the control volume is

Write the following assumption.
There is no viscous work in the system, 
Steady state flow of the system, 
Use the assumption condition in Equation (1).

Integrate the above equation.
![\begin{array}{l}\frac{\delta Q}{d t}-\frac{\delta W_{s}}{d t}=\rho v A\left[e+\frac{P}{\rho}\right]_{2}-\rho v A\left[e+\frac{P}{\rho}\right] \\=\rho_{1} Q\left[u_{2}-u_{1}+\frac{v_{2}^{2}-v_{1}^{2}}{2}+\left(P_{2} / \rho_{2}-P_{1} / \rho_{1}\right)+g\left(z_{2}-z_{1}\right)\right] \\=\rho_{1} A_{1} v_{1}\left[u_{2}-u_{1}+\frac{v_{2}^{2}-v_{1}^{2}}{2}+\left(P_{2} / \rho_{2}-P_{1} / \rho_{1}\right)+g\left(z_{2}-z_{1}\right)\right]\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%5Cfrac%7B%5Cdelta%20Q%7D%7Bd%20t%7D-%5Cfrac%7B%5Cdelta%20W_%7Bs%7D%7D%7Bd%20t%7D%3D%5Crho%20v%20A%5Cleft%5Be%2B%5Cfrac%7BP%7D%7B%5Crho%7D%5Cright%5D_%7B2%7D-%5Crho%20v%20A%5Cleft%5Be%2B%5Cfrac%7BP%7D%7B%5Crho%7D%5Cright%5D%20%5C%5C%3D%5Crho_%7B1%7D%20Q%5Cleft%5Bu_%7B2%7D-u_%7B1%7D%2B%5Cfrac%7Bv_%7B2%7D%5E%7B2%7D-v_%7B1%7D%5E%7B2%7D%7D%7B2%7D%2B%5Cleft%28P_%7B2%7D%20%2F%20%5Crho_%7B2%7D-P_%7B1%7D%20%2F%20%5Crho_%7B1%7D%5Cright%29%2Bg%5Cleft%28z_%7B2%7D-z_%7B1%7D%5Cright%29%5Cright%5D%20%5C%5C%3D%5Crho_%7B1%7D%20A_%7B1%7D%20v_%7B1%7D%5Cleft%5Bu_%7B2%7D-u_%7B1%7D%2B%5Cfrac%7Bv_%7B2%7D%5E%7B2%7D-v_%7B1%7D%5E%7B2%7D%7D%7B2%7D%2B%5Cleft%28P_%7B2%7D%20%2F%20%5Crho_%7B2%7D-P_%7B1%7D%20%2F%20%5Crho_%7B1%7D%5Cright%29%2Bg%5Cleft%28z_%7B2%7D-z_%7B1%7D%5Cright%29%5Cright%5D%5Cend%7Barray%7D)
Here, internal energy at entry section is
internal energy at exit section is
volumetric flow rate is Q, inlet fluid density is
, outlet fluid density is
, specific energy is e, exit velocity is
, inlet velocity is
, inlet pressure is
, outlet pressure is
, acceleration due to gravity is g and distance between inlet and outlet is z.
Calculate the cross section area at entry section.

Here, inlet diameter of pipe is 
Substitute 0.962 ft for

Calculate the heat transfer rate through the turbine.
Substitute 


![\frac{\delta Q}{d t}-\frac{\delta W_{s}}{d t}=\rho_{1} A_{1} v_{1}\left[u_{2}-u_{1}+\frac{v_{2}^{2}-v_{1}^{2}}{2}+\left(P_{2} / \rho_{2}-P_{1} / \rho_{1}\right)+g\left(z_{2}-z_{1}\right)\right]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cdelta%20Q%7D%7Bd%20t%7D-%5Cfrac%7B%5Cdelta%20W_%7Bs%7D%7D%7Bd%20t%7D%3D%5Crho_%7B1%7D%20A_%7B1%7D%20v_%7B1%7D%5Cleft%5Bu_%7B2%7D-u_%7B1%7D%2B%5Cfrac%7Bv_%7B2%7D%5E%7B2%7D-v_%7B1%7D%5E%7B2%7D%7D%7B2%7D%2B%5Cleft%28P_%7B2%7D%20%2F%20%5Crho_%7B2%7D-P_%7B1%7D%20%2F%20%5Crho_%7B1%7D%5Cright%29%2Bg%5Cleft%28z_%7B2%7D-z_%7B1%7D%5Cright%29%5Cright%5D)
![\begin{aligned}&\frac{\delta Q}{d t}=\left(9.98 \times 10^{5}+3.5 \times 10^{5}\right) \mathrm{ftlb}_{\mathrm{f}} / \mathrm{s}\\&=13.48 \times 10^{5} \mathrm{ftb}_{\mathrm{f}} / \mathrm{s}\left[\frac{1 \mathrm{Ba}}{778.17 \mathrm{ftbr}}\right]\left[\frac{3600 \mathrm{s}}{1 \mathrm{hr}}\right]\\&=6.23 \times 10^{6} \mathrm{Btu} / \mathrm{hr}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26%5Cfrac%7B%5Cdelta%20Q%7D%7Bd%20t%7D%3D%5Cleft%289.98%20%5Ctimes%2010%5E%7B5%7D%2B3.5%20%5Ctimes%2010%5E%7B5%7D%5Cright%29%20%5Cmathrm%7Bftlb%7D_%7B%5Cmathrm%7Bf%7D%7D%20%2F%20%5Cmathrm%7Bs%7D%5C%5C%26%3D13.48%20%5Ctimes%2010%5E%7B5%7D%20%5Cmathrm%7Bftb%7D_%7B%5Cmathrm%7Bf%7D%7D%20%2F%20%5Cmathrm%7Bs%7D%5Cleft%5B%5Cfrac%7B1%20%5Cmathrm%7BBa%7D%7D%7B778.17%20%5Cmathrm%7Bftbr%7D%7D%5Cright%5D%5Cleft%5B%5Cfrac%7B3600%20%5Cmathrm%7Bs%7D%7D%7B1%20%5Cmathrm%7Bhr%7D%7D%5Cright%5D%5C%5C%26%3D6.23%20%5Ctimes%2010%5E%7B6%7D%20%5Cmathrm%7BBtu%7D%20%2F%20%5Cmathrm%7Bhr%7D%5Cend%7Baligned%7D)
Hence, the heat transfer rate through the turbine is
.