Answer:
The algorithm is as follows:
1. Declare Arr1 and Arr2
2. Get Input for Arr1 and Arr2
3. Initialize count to 0
4. For i in Arr2
4.1 For j in Arr1:
4.1.1 If i > j Then
4.1.1.1 count = count + 1
4.2 End j loop
4.3 Print count
4.4 count = 0
4.5 End i loop
5. End
Explanation:
This declares both arrays
1. Declare Arr1 and Arr2
This gets input for both arrays
2. Get Input for Arr1 and Arr2
This initializes count to 0
3. Initialize count to 0
This iterates through Arr2
4. For i in Arr2
This iterates through Arr1 (An inner loop)
4.1 For j in Arr1:
This checks if current element is greater than current element in Arr1
4.1.1 If i > j Then
If yes, count is incremented by 1
4.1.1.1 count = count + 1
This ends the inner loop
4.2 End j loop
Print count and set count to 0
<em>4.3 Print count</em>
<em>4.4 count = 0</em>
End the outer loop
4.5 End i loop
End the algorithm
5. End
Builderman is dksbdkbsnsbs
Answer:
Airplanes' wings are curved on top and flatter on the bottom. That shape makes air flow over the top faster than under the bottom. As a result, less air pressure is on top of the wing. This lower pressure makes the wing, and the airplane it's attached to, move up.
Explanation:
Answer:
awnsers should be added to know to show additional
Answer:
15.24°C
Explanation:
The quality of any heat pump pumping heat from cold to hot place is determined by its coefficient of performance (COP) defined as

Where Q_{in} is heat delivered into the hot place, in this case, the house, and W is the work used to pump heat
You can think of this quantity as similar to heat engine's efficiency
In our case, the COP of our heater is

Where T_{house} = 24°C and T_{out} is temperature outside
To achieve maximum heating, we will have to use the most efficient heat pump, and, according to the second law of thermodynamics, nothing is more efficient that Carnot Heat Pump
Which has COP of:

So we equate the COP of our heater with COP of Carnot heater

Rearrange the equation

Solve this simple quadratic equation, and you should get that the lowest outdoor temperature that could still allow heat to be pumped into your house would be
15.24°C