Answer : The rate law for the overall reaction is, ![Rate=k[A][B]](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5BB%5D)
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
As we are given the mechanism for the reaction :
Step 1 :
(slow)
Step 2 :
(fast)
Overall reaction : 
The rate law expression for overall reaction should be in terms of A and B.
As we know that the slow step is the rate determining step. So,
The slow step reaction is,

The expression of rate law for this reaction will be,
![Rate=k[A][B]](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5BB%5D)
Hence, the rate law for the overall reaction is ![Rate=k[A][B]](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5BB%5D)
It is due to a lack of providable energy to the next trophic level of the energy pyramid. Primary consumers only obtain around 10% of energy that producers have, and the energy depletes as you move further and further up the food chain, until you reach the tertiary consumers which have the least amount of energy at their disposal, meaning there are less of them than other organisms further down the energy pyramid.
Hope this helped!
Answer:
Metal
Explanation:
In chemistry, an alkali is a basic, ionic salt of an alkali metal or alkaline earth metal chemical element. An alkali also can be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0.
Answer: 2800 calories
Explanation:
Latent heat of fusion is the amount of heat required to convert 1 mole of solid to liquid at atmospheric pressure.
Amount of heat required to fuse 1 gram of water = 80 cal
Mass of ice given = 35 gram
Heat required to fuse 1 g of ice at
= 80 cal
Thus Heat required to fuse 35 g of ice =
Thus 2800 calories of energy is required to melt 35 g ice cube